"I will never kick a rock"

The Manlius Limestone July 4, 2019

in Uncategorized by

The Devonian, Part two
The Greenville Press, Feb. 17, 2005
Updated by Robert and Johanna Titus

The last time we wrote, we traveled down Rte. 23 towards the Rip Van Winkle Bridge and looked at a unit of rock called the Rondout Formation. The strata of that rock unit took us back to a very old fossil mudflat at the edge of the Devonian age Helderberg Sea. This time let’s look at the overlying rocks. Those strata pick up right above the Rondout. The top of the Rondout showed some distorted strata. The next unit, the Manlius Limestone, lies immediately above them.

Geologist points at the Manlius Limestone

These strata are limestones. They are composed of calcium carbonate (CaCO3), and that makes them the same stuff that most of Florida and all of the Bahamas are made of. If you have been to either of those places, then you can begin to imagine what those limestones tell us about what this area was like back in the Devonian. It was tropical and covered by a sparkling, aqua-colored, very shallow sea. Actually, most of the Manlius was deposited within the tidal zone or just above the high tide mark.

In short, most of the Manlius was deposited in a broad tidal flat. It was not exactly a pleasant place to be. It was hot, salty and would have been really uncomfortable for humans. Not many organisms lived in this setting but there were some. There was a form of crustacean living there. This creature, called an ostracod (E in our second illustration), was a small and distant relative of the shrimp. Like brine shrimp these little fellows must have been tolerant of the very salty conditions that prevailed. Alongside the ostracods were some of those mysteries of paleontology, creatures we call tentaculitids (F&G). These were some sort of invertebrate shellfish but, exactly what, we can’t hope to ever know. They possessed handsome little conical shells and those cones were ornately ridged. There is nothing like them alive today and we, thus, have no way of ever figuring out what they might have been.


Ostracods and tentaculitids seem to have been pretty well adapted to life on the hot, mudflats, broiling in the tropical sun. Few other animals could, however, tolerate these conditions. But there was one form of life that did quite well in this setting. These were the blue green algae. They often go by another name, the cyanobacteria, and that name gives you a clue as to just how primitive and old these forms were. These ones are still alive, and we can study them, so we know a lot about them.
Cyanobacteria are, as the name implies, photosynthetic bacteria. That makes them very primitive one-celled organisms which were the earliest to photosynthesize. They first appear in the fossil record about three and one half billion (yes, with a b) years ago and that makes them among the oldest creatures that we know of. Hot, broiling, sunny days were common back then and these creatures, long ago, evolved a tolerance for such conditions. By the Devonian, they were old hands at life in such awful settings.
They formed algal mats that coated the old mudflat surfaces and we can recognize those mats in cross sectional views of the Manlius. We see thinly laminated horizons of the limestone. Each bed is an old algal mat. The algae grew and they were sticky so that grains of silt and clay would stick to them. That made the laminated rock that we see.

Not all of the Manlius was mudflat; the upper part of the unit was deposited in very shallow sea water, just deep enough for another whole ecology. If you look carefully in this outcrop, you can find the faint (very faint) images of reef building organisms. They are called stromatoporoids and these are very mysterious organisms. Just as with the tentaculitids, these forms have long been extinct. We can only guess what they amounted to in life, now they are just poorly preserved fossils. Please see last week’s blog.
The Manlius Limestone most likely records a long period of geological stability, but there are some interesting interruptions. There is at least one level we have evidence of serious erosion. Apparently, the crust buckled upwards (an earthquake?) and this was followed by a period of erosion as Nature sought to reestablish Her pre-uplift level.
Crustal activity such as this must have been very rare in the early Devonian, but as we shall see, this event was the harbinger of much more to come. To look at this erosional surface, and especially to touch it, is to be in direct contact with a moment in the past.

Aug. 23, 406,321,482 BC, high noon – The sky is clear and cloudless, and the Sun is positively baking the landscape below. It is extremely hot, well above 100 degrees, and to make it all the worse, the heat has pooled on the still surface. There is no breeze at all, and the light-colored landscape reflects wavy masses of hot air rising off its surface. This is the stuff mirages are made of, and in the distant east, there appears to be a large pool of water. There isn’t; Nature is trying to fool us.
But to the west there is water; it is the Helderberg Sea. It is active on this day; the large swells of approaching waves roll towards the coast. The waves consist of crests and troughs; it is the troughs that are most interesting. As they pass, they momentarily reveal the top of reef “heads.” These are the brief exposures of stromatoporoids. Too bad they are so far away; we might get a better look at them is maybe learn something about what they really are. But, in a flash, we lose interest in those stromatoporoids.
Suddenly, without any warning, comes a low rumble. It sounds like a very powerful loudspeaker playing a very low frequency sound. Then there is a shaking of the ground beneath us. The earth’s shaking picks up for a few seconds and the mudflat seems to roll and fold up and down just as the advancing waves had been doing, just seconds earlier. The ocean is churned up and wild with action. Now several large waves of displaced water crest and roll over what had been beach.
Almost as quickly as it began, the earthquake has ended. The mudflat is a mess, contorted, distorted and folded by the seismic activity. Strangely, the layers of sediment were cohesive enough to maintain much of their form in the thick of the activity. Now they look like shiny, light-colored carpets that have been folded. The mud flats are a good foot higher than before the quake; the crust has risen that much.
The water that has sloshed across the beach is flowing back into the Helderberg Sea. It is beginning to carve small channels as it finds its way downhill. It’s part of a process; Nature is already trying to lower what the earthquake has lifted.
Hundreds of millions of years from now people will come and look at all this.
Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

Dawn of the Devonian June 27,2019

in Uncategorized by

Dawn of the Devonian
Greenville Press
Feb. 3, 2005
Updated by Robert and Johanna Titus

You have, no doubt, driven down Rte. 23 on your way towards the Rip Van Winkle Bridge, and passed one or more vans parked along the large limestone outcrops that are commonly seen all along the highway there. Along the road, large numbers of students can be seen pounding with hammers on the rock ledges. These are geology field trips. Students and faculty come from colleges all over the northeast to visit these rocks.


The location is one of the great geological tourist traps of our part of the country. Between now and early autumn scores of these visiting vans will appear here. The outcrops stretch for a mile or so along Rte. 23, but there is one location which is even better than all the rest. That site is the exit ramp where drivers leave Rte. 23 and get onto Rte. 145 west. They may be headed for Leeds, but they are passing some very good geology.
The location displays what geologists call an angular unconformity. If you stop there you will see one set of stratified rocks dipping steeply to the right. These strata are alternating horizons of sandstone and black shale. They make up a very small part of what is called the Normanskill Formation. That rock unit dates back to a time called the Ordovician and that makes them about 450 million years old. These strata were deposited in what was probably some very deep, marine waters, but that is not our story today.
Above the right-dipping strata are some left-dipping beds. Left and right, these contrasting inclinations form the “angular” part of an angular unconformity. The overlying strata are called the beds of the Rondout Formation. That unit is Silurian in age and that makes it merely about 420 million years old. That leaves about 30 million years missing and that is the “unconformity” part of our angular unconformity.
The sedimentary rocks of the Rondout are called dolomites. Dolomite is a calcium/magnesium carbonate. It used to be a different rock, something commonly known as limestone. That’s important as limestone only forms in a tropical climate. These sediments accumulated on an ancient mudflat, at the edge of an ancient tropical sea. The sediments made up the upper reaches of the high tide level, we call that a “super-tidal” setting. The ocean waters only reached this high up at the highest of tides. You would have to travel to the Persian Gulf to see something like this today.
The Rondout is important to geologists as it forms the first and oldest unit of the Helderberg Sea. This is a thick sequence of limestone that makes up the Helderberg Escarpment which looms as a great ridge above Albany. The Helderberg strata make up a lot of the bedrock in this area and so geologists pay a great deal of attention to it.
At the Rte. 23 outcrop, the Rondout is capped by some badly distorted strata. They were deposited as flat sheets but subsequently they came to be deformed as great crustal stresses folded them up. You can easily see this at the outcrop. The top of the folded sequence marks what many geologists call the very end of the Silurian time period. Above this horizon is the very first stratum of the next time unit, the Devonian, dating back to about 419 million years ago. This is a very important horizon as the Devonian is the most important unit of time in the entire Catskill region. Every bit of bedrock from here to Syracuse and beyond is Devonian. That’s a lot of rock and it all started right here. This horizon of rock takes us back to the dawn of the Devonian and the very dawn of the Catskills themselves. That makes it important. But, before the Devonian, there was the Silurian.
Sunrise, July 14, 419,632,751 BC – The air is absolutely quiet. Not the slightest of breeze can be felt. The landscape is similarly still. All around us to the east is a monotonous flatness. It’s not that the land is smooth; it’s a very rough mudflat. Every few feet there is a low tilted ledge of rock just poking above the surface. These ledges vary in thickness; some are just a few inches thick, while others can be a few feet thick. Each ledge is composed of sandstone; each has a bleached creamy yellow appearance. Each is broken up by fractures that pass perpendicular to the rest of the rock. The ledges all seem to be broken up into rough cubes.
In between each set of ledges is a small “valley;” all of these are filled with a litter of dark gray pebbles, mixed with a darker, almost black, earth. Here and there, some very small puddles can be seen in the valleys. The edge of each of these is rimmed with a white substance that appears to be salt. These are, indeed, saltwater pools, and they have been evaporating in recent times.
This is the most dead-looking of landscapes. There are no plants here, not a blade of grass nor even a lowly weed. There are no insects on the ground, nor are there birds in the sky. A careful check of the “soils” would not even reveal any worms.
And it is, of course, absolutely quiet. There is no wind and there are no animals to break the silence. It is a silence that is almost impossible for us to imagine for we are visitors from a noisy world.
But this actually is our world, and it’s a very familiar part of our world. Someday this very location will be the intersection of Routes 23 and 145; this will be the exact place were an exit lane connects the two highways. People will call this the town of Leeds. But, at the time of our visit there is no sound of traffic. This is not the noisy world of today, but the almost silent world of the late Silurian time.
But we are time travelers and we have our left foot in the Silurian and our right one is in the modern world. We look to our left and see a Silurian sunrise, to our right the highway traffic of Rt. 23 zips by.
But our interest and presence in the modern world fades; it is the Silurian vision that captivates our mind’s eyes. There and then, on the distant eastern horizon, the sun is about to rise. A gray light first appeared, and then slowly turned red, and now it is brightening with ambitions of an intense yellow. The exact moment of sunrise is always magic. The brilliance of the sun just creases the horizon and, quickly, the rest of the great orb ascends into its rightful position in the sky. The movement is smooth and surprisingly quick. It is the only time of the day when you can really sense the movement of our great nearby star.
For almost four and one half billion years the sunrises have been appearing on this horizon, but the sun does not show its age. This Silurian time period has been a fine era for sunrises. What with all the flatness of the landscape extending off to the east, nothing ever gets in the way of a view of the rising sun. And now the sun is gaining altitude and its light shines across our flat lands to far behind us.
We turn and gaze westwards and there, before us, is a very broad and very smooth sandy mudflat. On the distant western horizon, the disk of a gorgeous full moon is just setting. Full moons are like vampires; they do not like to be out during the day. They always set just as the sun comes up.
And way out there, where the moon is setting, is the flat horizon of a distant ocean. It is nothing like the great Atlantic of today. There is no chop to the water, not even waves lap up against this shore. But it is a sizable body of water and it will, someday, be called the Helderberg Sea. It is, as far as we can observe, a very shallow water ocean. Today, with no wind, there are no waves or substantial currents, and its clear, aqua-colored waters lie still on the horizon.
Our nearby mudflat is composed of white, fine-grained limy sand and its smooth surface almost glistens. It was recently soaked under a very high tide, but those waters are receding rapidly. Mudflats should be dotted with snails, slowly meandering about, but this one is not. It seems to be just as dead as the flat landscape to our east.
With the rising of the sun, a little breeze is at last generated. It is a very warm wind; these are the tropics and the temperature will be very hot later in the day. It was like this yesterday and it will be like this tomorrow. Change comes very slowly in the Silurian.

Contact the authors at randjtitus@prodigy.net. Join their facebook page The Catskill Geologist.”

The Ice Age at the Catskill Arboretum 6-20-19

in Uncategorized by

The Ice Age at the Mountain Top Arboretum
On the Rocks

Woodstock Times Dec. 2018
Robert and Johanna Titus

While we spend a lot of time out looking at our region’s geology, we also make real efforts to be active with many of our local Catskills civic groups, including of course the Woodstock Land Conservancy. Another of those groups is the Mountain Top Arboretum. We have spoken there several times. Have you been there? It’s just north of Tannersville. The Arboretum is home to a collection of mostly local and native tree species. Having been founded in 1977, those trees have not had time to get to be very tall, but they are coming along.
. Actually not all of the trees up there are local, and some not only came from far away, but they date back to much earlier times in Earth history. Have you ever seen a Metasequoia? Its common name is the “Dawn Redwood.” The genus evolved about a hundred million years ago, during the Cretaceous time period and was ancestral to the giant trees of today’s California. Well, a few of them have been planted at the Arboretum. They are worth the trip all by themselves.
But, curiously, trees are not the topic of today’s article; this is, after all, a geology column. Recently, the Arboretum asked us to conduct a survey of the geological history of their property. We do that sort of thing frequently. We went up there and poked around. What we found is some very good ice age history. And to make it better, much of this ice age history is packed into just a quarter acre of land right next to the parking lot.
Let’s take you up there. Drive through Palenville and Tannersville on Rte. 23A; then turn right (north) on 23C. You are definitely on the proverbial right side of the tracks and you will see some very nice summer homes along the way. When you get to the Arboretum, you will find that parking lot right next to the highway. Just across the driveway is a low exposure of Devonian aged sandstone.
This is located right at the gate to what is called the West Meadow. As soon as we reached the exposed bedrock we saw evidence of an ice age history here. We looked down and saw what is called a glacially scoured surface. The rock here was ground into a smooth surface, mostly by sand carried by a passing glacier. The weight of the ice had pressed the sand into the bedrock, just like sandpaper. That’s why it is so smooth.

There was more, that glacier had carried cobbles and they too had been ground into the bedrock. That left scratches behind. All of them had nearly perfect north-to-south orientations; this recorded the directions of the glacier’s flow. Geologists call such scratches “glacial striations.” You will have no trouble finding them.
Then we noticed something else. Strata of sandstone had been broken loose by the passing ice. The advancing ice had formed a bond to the rock and, as the ice moved south, it yanked or plucked rock loose. This left low ledges of sandstone facing due south. See our second photo.

After visiting the glacially scoured landscapes of the West Meadow, you might go back to the parking lot and get a map of the Arboretum trails. Return and head east on Maude Adams Road. You will pass the East Meadow on the left and then reach the Hemlock Trail. That trail will take you south through what is called the Spruce Glen, all of this is Arboretum property. Look left and right; you are passing through a glaciated landscape. Here there is no bare bedrock exposed, instead this was a location where retreating glaciers left behind hummocky heaps of earth as they were melting. This records a time of global warming.
We are geologists; we are never entirely in the present when we are out exploring; we always let our mind’s eyes take us into the past. We were walking south on the Hemlock Trail and then turned around and looked north. In front of us we saw the edge of a melting sheet of ice. It was about 14,000 years ago. This was very late in the Ice Age and we had landed here on one of those increasingly common warm days. Before us, the disintegrating glacier rose up and presented us with an image of vast volumes of meltwater pouring out of large crevasses all across its front. Streams flowed past us, left and right.
But there was more; those heaps of earth lay all about, all of them left behind by the melting ice. There was no vegetation. Life had been following the melting glaciers and heading north, but it had not yet returned to the Arboretum grounds. Many cobbles and large boulders lay all about us. Otherwise, it was a bleak, barren and inhospitable landscape. In the distant future geologists would call this sort of thing a recessional moraine. But, unlike those other future geologists, we did not have to imagine it; we were privileged to witness it for ourselves.
We turned south again and continued along what would eventually be the Hemlock Trail–many thousands of years after the Ice Age had ended. Soon we spied a pond. The shallow valley here had been blocked and dammed by some more of that moraine material. We walked down to its shore and gazed into its black waters. Then, in a dizzying flash, we were transported back to our own time, the spring of 2018. We were standing at the very end of the Hemlock Trail, in front of us was a dock that led out onto what is called today “the Hidden Marsh.” There was no longer a pond here; it had filled with the sediments and the vegetation of that marsh.

We had not just been hikers on this geologic trek; our travels had taken us through what scientists call “time and space.” You can go up there and take this trip yourself. We think you will enjoy it.
==================================================================
Contact the authors at randjtitus@prodigy.com. Join their facebook page “The Catskill Geologist.” Read their blogs at “thecatskillgeologist.com.”

The Mountain House ledge June 13, 2019

in Uncategorized by

Visions of a Hudson Valley geological past: “The Mountain House Ledge.”
Visit the Mountain House ledge and explore its geological past.
Updated by Robert and Johanna Titus

Certainly one of the most historic sites in all the Catskills is the Mountain House ledge at North/South Lake Campground. We are betting that most of you have been there. It’s a grand, broad shelf of sandstone, jutting out 2,000 feet above the floor of the Hudson Valley. It’s claimed that you can view some 70 miles of that valley from this site. It is, of course, the very place chosen for the building of the Catskill Mountain House Hotel, back in the 1820’s. That was the grandest of the grand hotels of the Catskills during our region’s most fashionable era. The hotel attracted a Gilded Age aristocracy; a Who’s Who of the American elite vacationed there. But something spiritual happened here too. America came to love nature at this location. It was here that the Hudson Valley School of art was born, when Thomas Cole spent a summer sketching the scenery. Almost equally distinguished was the poetry and prose that was inspired by this “sublime” wilderness landscape.


There is no way to overestimate the historical heritage of these few acres of land. The whole culture that we equate with the word Catskills had its birth at the Mountain House. And the hotel had its birth on this scenic ledge. It is one of our favorite places. We frequently go there and just sit upon the ledge’s rocks. We touch the sandstone and look around. All that lies above the ground, above those rocks, belongs to history. Here historians such as Roland Van Zandt and Alf Evers prevail. They explored the past at this site and recorded its many influences on our modern culture.
But, we touch those rocks again. Everything below the ground belongs to us! All around is the historical heritage of modern Catskills culture but below is a geological past that reaches back hundreds of millions of years. Nearly four miles of sedimentary rock lies beneath us – right here. And, down there, every stratum of rock has its own history, from its own time.
We touch this ledge and contemplate its petrified sand. It accumulated on the floor of a river channel. That was during the Devonian time period, about 380 million years ago. A river flowed by, right here, and then it disappeared off to the west. We gaze west and then turn around and look, more intently, eastward hoping to see where that stream and its sand came from. But . . . there’s nothing there but the great emptiness of the valley.
Suddenly, we are time travelers; around us it is the Devonian time period. We are just above the waters in the middle of that stream, looking east. To our left and right are the river’s low banks. Rising above them are Devonian trees, at least they must be trees; they are so exotic, so strange in appearance. Frail looking trunks rise 25 feet above the banks. There are no branches, not until the very top is there even any foliage. All this defies all efforts at description. There are no leaves, just things that might be called fronds. But even that term does not suffice. These are among the most primitive “trees” known to science. They represent evolution’s earliest efforts at the very concept of a forest, and Devonian evolution has not yet become very good at that. If these trees defy description, it’s because nothing like them grows today.
We turn and look east. In the distance a mighty mountain range towers above that horizon. We quickly realize that the Taconic and Berkshires of today are but the roots of this ancient mountain range. Their middle slopes are gun metal blue and cut by many enormous ravines. Above the blue is a horizontal white snow line. High above that are the white peaks of this enormous range.
Our journey into the past is a brief one. Soon we sit again upon the Mountain House ledge and see our modern landscape. We have beheld its geological heritage.
Reach the authors at randjtitus@prodigy.com. Join their facebook page “The Catskill Geologist.”

Visions of the past – Catskill Creek June 6, 2019

in Uncategorized by

Visions of an Art Trail past – Catskill Creek
On The Rocks
Jan. 30, 2013
Robert and Johanna Titus

We have been traveling the Hudson River Art Trail, seeing the landscapes that so inspired the great American artists of the 19th Century. But ours have not been the journeys of art historians, but those of geologists. We are privileged to see what the artists could not; we can look into the distant past. Last time we visited Frederic Church’s Persian Revival house Olana and we saw the ice age history of that site. In this journey we visit what may have been Thomas Cole’s favorite scene: that is the view of Catskill Creek from Jefferson Heights just west of the Village of Catskill.
That location was just across Catskill Creek from Cole’s home. He frequently hiked there and composed views. In the foreground there was a great bend in the creek as it flowed by below. That was scenic enough, but in the distance it all got better. Out there was the Catskill Front, the fabled Wall of Manitou, lying on the western horizon. In a recess on that distant horizon, but still close enough to be seen, were the lower stretches of Kaaterskill Clove.


Cole seems to have done a dozen or so paintings at this location. Like any good artist he experimented. He tried out the scene at different times of the day and during different seasons of the year. His art can be called luminism; he liked to place the sun in the far distance and paint its light shining down and across the landscape. He could vary the sun’s color with the time of the day, saving deep reds and oranges for late afternoon. He returned to the site as the years went by, and painted changes that had occurred there. Much to his dismay he saw a railroad line put in. He lamented the encroachment of industry on what had been a purely pastoral image. Landscape artists do not celebrate industrial development.
As the generations have passed since Cole’s time, a different sort of development came along: the forests returned. At least the trees did. They grew up and blocked Cole’s cherished view. When we first searched for it, we could not find it; it was hidden by the foliage. When the Art Trail was developed that posed a problem. The trail guide leads visitors to a nearby restaurant site, but you just cannot obtain a good view there. Thomas Cole’s grand scene seemed to have been lost to the very Nature he painted so well.
But, very recently, that all changed. At the top of the hill, at Jefferson Heights, a new sidewalk was installed. You can walk it and look to the west and, especially during the winter, you can see Cole’s bend in the river, right in front of you, and in the distance, the Catskills are out there too. It’s not as clear a view as Cole had, but it’s pretty good. We were thrilled when we first found this. We were sharing a moment with Thomas Cole and the whole Hudson River School of Art.
But we also saw this view as Cole couldn’t; we saw it about 15,000 years ago, at the close of the Ice Age. As geologists we get to pick exactly what times we go back to and visit. With our mind’s eyes we can witness those moments. And, for this journey, we picked a very good moment to visit. We wanted to see the Cole view as it was when the ice was melting. But we also wanted to see that view on the day when the melting reached its all-time peak. There had to have been a day and an hour when a warming climate was melting an absolute maximum of ice. That was the very moment when more water was cascading down Catskill and Kaaterskill Creeks than ever had before or ever would again. The channels and valleys of these streams strained to contain the flow – and failed.
We stood upon the same Jefferson Heights site, but for us it was that exact moment, 15,000 years ago. Below us, a vastness of water was pouring down the creek. It ignored the bend in the river as its flow rose and swelled up to overwhelm the whole valley. What we saw was a horizontal waterfall. The water presented a mixed image, contrasting its own gray brown colors with whitecap whites. This torrent swirled, and foamed, and thundered as it rushed by. The power of the flow was frightening; the sound was deafening. This was the full fury of Nature, displayed in a riotous image.
We looked up, all the way beyond to distant Kaaterskill Creek. Even in our mind’s eyes we could not travel that far. It must have been much worse out there, with a still greater flow of water coming down that steep canyon. We strained to see and were frustrated that we could not. We debated it and finally convinced ourselves that we were seeing a large rainbow rising above the mouth of the Clove. It was too distant foe us to be sure. We were awed by all that we beheld and we fully understood that we were seeing history in the making. What we were watching was nothing less than the great rising crescendo of an ending Ice Age.
Nobody ever painted this scene.
Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

The Glaciers got here first May 30, 2019

in Uncategorized by

The glaciers got there first
The Catskill Geologists
Robert and Johanna Titus

Have you been to the Walkway across the Hudson at Poughkeepsie? It’s a pedestrian bridge that, high up in the sky, crosses the river; We promise you, it’s quite the experience. But, opening next week, is something just as good and a lot closer. That’s the Hudson River Skywalk. The Skywalk also spans the Hudson, this time across the Rip Van Winkle Bridge. In so doing, it links two important historic sites: Frederic Church’s onetime home, Olana, and Cedar Grove, the Thomas Cole Historic Site. The new trail extends from Cedar Grove, across the bridge. and then it ascends the hill to Olana. Can there be a “theme’ to a walkway? If so, with this one it’s the Hudson River School of Art. Cole and Church were that “School’s” two leading lights.
We said that the Skywalk was just as good as the Walkway, but maybe we can write about something that makes it even better. If you get a chance and you head out over the Hudson, we would like you to look and see how steep the slopes are on either side. We are talking about the slope just beneath the western end of the bridge and the other slope just beneath Olana. That steepness is something that is not always easy to take notice of, but it is important. Shouldn’t there be a floodplain? Rivers are supposed to flow across broad, flat floodplains, aren’t they? So, why not here?


The Skywalk – 

We got to thinking about that and came up with an answer, a good geological answer. Halfway across the bridge we looked east and west and then north. In our mind’s eyes we saw a glacier. It was perhaps 14,000 years ago and, for the most recent time, an ice age glacier was advancing down the Hudson Valley. That glacier rubbed up against the slopes on both sides of the river. Glaciers can be very erosive and this one was no exception. It cut into Church Hill where Olana is perched. That would greatly improve the view that Frederic Church would eventually paint. It also cut into the western side of the river. All this erosion left no room for any kind of floodplain. Instead, it formed a rather boxy valley with a sizable river flowing down a surprisingly narrow pathway. You probably never noticed this, did you? Well, go out onto the Skyway and take a look.
The official opening is set for June 1st. People will congregate at Olana and at Cedar Grove. Each group will set out on a “parade” to the Skywalk Trail. If all goes well, they will all meet at the middle of the bridge. There will be a ribbon cutting at the park near the bridge’s toll plaza at noon. We don’t think there will be a golden spike, but it should be a fun event.
Plans may change so before going, you should contact Cedar Grove at thomascole.org or Olana at olana.org. Contact the authors at randjtitus@prodigy.net.

Go to the Olana or Cedar Grove websites for details. 

A red sunset May 23, 2019

in Uncategorized by

A red sunset
Windows Through Time
Register Star
Johanna and Robert Titus
June 4, 2014

We are guessing you have seen an image of “The Scream,” a very famous and much stolen painting by Norwegian impressionist artist Edvard Munch. There were actually four versions, painted between 1893 and 1910. Our favorite is the 1895 one. It’s the contorted face that catches everyone’s attention. Right behind this unhappy figure is a dock jutting out into a Norwegian fjord with a sailing ship in the distance. But, if you have an alert eye, there is the background; it’s the sky that’s interesting. Munch paints a striking vision of horizons of orange sky, mixed with thinner levels of blue and yellow. Once you take note of it, the sky is just as alarming as the rest of the painting. It’s truly great impressionist art.

We have been frequently guilty of slipping art into our columns, but how on earth have we managed to get Munch’s painting in here? The answer involves some of the professional debate that has swirled for decades over the colorful sky in the scream paintings. Many art historians have argued that Munch had experienced the orange sunsets that occurred all around the world for months after the eruption of the south Pacific volcano Krakatoa in 1883. Volcanic ash erupted from the volcano, drifted high into the sky and circulated around the world. Sunsets were a brilliant orange for quite some time and any number of landscape artists painted them.
That gets us back to some work done by famed artists Thomas Cole and Frederic Church. Cole was the master painter of the Hudson River School of landscape art. Frederic Church became his student in 1844 and 1845. He would follow in Cole’s footsteps and ascend to be the most successful member of the Hudson River School.
The Thomas Cole house mounts an art exhibit every summer; we never miss one This year’s (2014) paintings were almost all done during, or soon after, the two years of Church’s residency in Catskill. But we noticed something about the paintings done from 1847 to 1849. Those images were far more likely to have bright red sunsets (or sunrises) than others done earlier or later. Church found inspiration in the rising and falling sun. Sometimes it shined right up onto the undersides of the clouds. At other times descending lobes of clouds could be painted in fiery reds while other parts of those same clouds, hidden from the sunlight, would be painted in a variety of dark grays. Interspersed, would be occasional horizons of blue. This gave Church an interesting visual theme to explore. This play of light and color in landscape art is called luminism.
We are including several paintings from the exhibit. First, we ask you to take a good look at Morning, Looking East over the Hudson Valley from the Catskill Mountains, 1848. It has the rich play of colors we are talking about. Also, take a good look at Scene on Catskill Creek, 1847. Although not as red, it shows a brilliant setting sun. Now, look at Church’s Above the clouds at sunrise, 1849. We see, once again, the same play of colors.

     
We were familiar with the debate about The Scream and we began to wonder about Frederic Church’s paintings. Why did he paint such vivid skies from 1847 to 1849? Was it just his artistic imagination at work or was there something else? We are not art historians; we are practicing geologists. As such, could we find interesting scientific insights to help understand these paintings? We went to work. Scientists follow the scientific method. First, we find problems that need solving; then we develop hypotheses that might offer solutions to these problems. Let’s call our hypothesis “the scream hypothesis;” we argue that bright orange and red landscape paintings are associated with great volcanic eruptions. Scientists “test” their hypotheses by making observations, finding the facts behind them. We looked at history.
We found that there were five eruptions during 1846, four of them in November alone. In May the volcano Tangkuban Perahu, in Java, erupted. Then, in November, there were eruptions in Chile and Japan, then two more in the Cascade Mountains of our Pacific Northwest: Mt. Baker and Mt St. Helens.
All in all, it appears that as the year 1847 began, there must have been a lot of volcanic ash in the skies and they were likely spreading all over the globe. So, our hypothesis is that Frederic Church was influenced by volcanic ash in the skies when he was painting at that time. That hypothesis looks very plausible.
Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.:

Plattekill Clove May 17, 2019

in Uncategorized by

Devil’s Advocate
On the Rocks
Woodstock Times
Updated by Robert and Johanna Titus

Plattekill Clove is one of those out of the way Catskill canyons. The land is mostly open to the public now and there are few private residences. Take the West Saugerties Road to West Saugerties itself. Turn left onto Platte Clove Road which is also Rte. 16. This is the one road that ascends the clove. It is a narrow one and it isn’t open in the winter. Even in the warm months, however, you can hike up the road and not worry about too much traffic bothering you. There are several nice scenic viewpoints along the way and it’s well worth the effort to get to know this lovely location.
To us, it is the top of the clove that is most interesting. There is a remarkable stream pattern to be seen there. Plattekill Creek forms itself up there. Several small tributary streams descend the slopes of the eastern Catskills and combine to create the creek. None of them is of particular note, they’re just run-of-the-mill mountain streams. But even if these streams are of little note, what happens to them is
.
Plattekill Creek is a young stream. It probably dates back no further than the ice age. Before the glaciers flowed down the Hudson Valley there probably was no Plattekill Creek. But when the ice came it seems to have sheared off the eastern ledges of rock and created the great, steep “Wall of Manitou” that towers above the Hudson. The steep slope was, quite naturally enough, attacked by newly formed streams. Rivers flow rapidly down steep slopes and they cut deeply into them. That’s what produces cloves such as the Plattekill.
The best part of the clove is near its top, a location known as the “Devil’s Kitchen.” The Catskill Center for Conservation and Development has acquired much of the land here, and the public is welcome to visit this site. The center owns a tiny red cabin at the top of the clove. Those two streams we mentioned reach a confluence just above the cabin. The confluence is of no particular note, but just downstream the combined flow drops off a fine waterfall. Here the erosion of Plattekill Creek has reached up into the mountain and cut the falls.

To see the waterfall, you can follow the trail that starts next to the cabin and descends a short distance down the clove, curves back and brings you to the base of the falls. From the base of the falls you can turn around and look down the valley. This is real good youthful stream morphology. The canyon is narrow and deep. It is the product of very rapid and very recent erosion. The Catskill Center welcomes you, but they would like it very much if you would stay on the marked trail.
A quarter mile farther down the road another small mountain stream descends from the north and enters the Plattekill Creek. This erosive stream has been a very active itself. It has cut the most remarkably narrow and deep chasm into the bedrock. The work “defile” is sometimes used for a landscape feature of this sort, and it’s just the right word. This cut in the slopes is on private property, but you will have no trouble seeing it from the side of the road.

The falls at the upper Plattekill Clove is one of the most graphic demonstrations of the erosive power of a mountain stream that we know of in the area. This kind of creek devotes itself to what is called downcutting. Erosion is focused on the removal of rock beneath the stream bed. Virtually no widening of the valley has yet occurred. It is the earliest stage in the development of a mountain creek’s valley. The flow of water exploits the fracture patterns that are here and removes blocks of rock from between the fractures, one at a time. Eventually the defile is produced. Spring is the time of the year to see this process in action. The Devil’s Kitchen won’t last for long (in terms of geological time), a couple of hundred centuries pass by and bingo – the canyon is gone! So, enjoy it now, while you still can.
Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

A moraine at Cooperstown May 9, 2019

in Uncategorized by

A Line Drawn in the Sand
The Cooperstown Geologist
Updated by Robert and Johanna Titus
March 2007

A geologist is privileged to see the world differently from other people. That’s not arrogance; that’s just the product of a lot of experience in our science. We would like to prove this by taking you up a road you have probably traveled many times. On our trip I would like to show you what I see; it may change your perceptions.
Head south from Cooperstown on Rte. 28 until you reach County Rte. 26 and turn right (west). Drive to the top of the hill and park (safely; it is a busy highway). Across the road on the south side is a wonderful panoramic view of the upper Susquehanna. It is also a panoramic view of the Ice Age.


Right in front of you is a series of pretty little rolling hillocks. They rise and fall like waves upon a roiling ocean, but these “waves” are much more smoothed out than those of an ocean. Use the words sinuous or sinuosity to describe this land. Is this view just something pretty, or is there more?
There’s more. We geologists look at these forms and call them kames and kettles. The kames are the sinuous rises while the kettles are the sinuous depressions. How did they get there and what do they have to do with the Ice Age? Turn around and look.
North of the road today is a farmstead, but in our mind’s eye we look and we see a glacier. A big dirty, wet pile of glacial ice lies right where the farm should be. It is melting and melting rapidly. Boulders, cobbles and earth are tumbling out of the dirty ice. Thundering flows of turbid water are cascading off the glacier and streams of agitated meltwater are flowing to the south.
Turn around again and look south. The turning may make you dizzy but the travel through time makes it worse. We are now in the year 12,356 BC and before us is another, more barren vision of an ice age Cooperstown. In the distance, just east of and across today’s Rte. 28, lies a glistening plain of soggy wet sediment. It’s the freshly deposited sediment that was washed out by those meltwater streams. Those creeks have broken up into a braiding of crisscrossing rivulets and it is these that have been spreading the sediment across that flat plain.
But now gaze immediately to our front. We see those sinuous hillocks again, but now stripped of their modern grasses; it is a freshly formed kame and kettle landscape. The kames are wet heaps of sand and gravel. There are a lot of boulders in them and some of them are enormous. It’s the kettles that tell much of the story. At the bottom of each is a mass of dirty ice. Those are “the tips of ice bergs.” It seems that each kettle formed where a large broken chunk of glacier had gotten itself buried. The climate has been warming and those masses of buried ice have been slowly melting. As they have done so the land above them has collapsed into those pretty sinuosities we call kettles.
We slowly become aware of what has taken place here. From behind us a great glacier has advanced down the Susquehanna Valley. It reached today’s Rte. 26 and there it came to a halt. Briefly the forces that drive the glacier forward were exactly balanced by the processes of melting. Boulders, cobbles and sandy gravel were brought to the front of the ice and dumped just south of today’s Rte. 26. It’s something geologists call a glacial moraine. The melting glacier provided the streams of water that carried much of the sediment beyond the moraine and deposited it on that plain we see across Rte. 28. Geologists call this an outwash deposit; it is a good name.
The whole assemblage of landforms is called a “moraine-outwash complex” and in our mind’s eye it provides a fascinating vision of the past. But don’t just read about it, bring this column to Rte. 26 and stand atop the hill and read it again with the landscape right in front of you. We told you, we geologists see the landscape differently from others and here is the place to learn that.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

Pillow talk

in Uncategorized by

Pillow Talk
On the Rocks
The Woodstock Times
June 3, 1999
Updated by Robert and Johanna Titus

There is something naturally mysterious about the bottom of the sea. Sea floors are dark, hidden and nearly impossible to get to, so of course they are shrouded in a captivating sort of mystery. But if the bottom of the sea is a puzzle, what about under the bottom of the sea? Who can even guess what goes on beneath the surface of masses of soft sediment lying buried at the bottom of the sea? Nobody, we suppose, and you would wonder who would even care. But things do happen down there and sometimes we geologists get to see the results, left as impressions in the sedimentary rocks. The rocks show deformations which occurred while they were still soft, wet sediments. What caused these deformations? That’s the job of a sedimentologist to figure out. Mind you, we are not trying to build up some great, enormous mystery here. Nothing supernatural lurks down there. In fact, nothing even all that interesting goes on within the sediments. We are just suggesting that, under the pressure of great weight, things happen to soft wet sediment and it’s the nature of we geologists to try to understand what it is.
The problem comes to light where weathering and erosion have cut into sedimentary rock. Road building also does a fine job of slicing cross sections into outcrops and exposing their interesting structures, including the results of deformational processes. We found a good example recently along Rte. 212 at its intersection with Centerville Church Road. Here, long ago, road building cut a number of excellent outcrops, exposing fine cross-sectional views of sedimentary rocks. The rocks belong to the Hamilton Group. They are strata of marine sandstones and shales that were deposited at the bottom of the Catskill Sea during the Devonian time period, nearly 400 million years ago. At the time of deposition these sediments were nothing special, just sands and muds. Today they are still nothing all that special. We looked to see if there were any fossils but found none. There were no special sedimentary structures either, no channel forms, no ripple marks or even the cross bedding of strong currents. It was, for the most part, just a routine outcrop.
  Typical ball and pillar structure

But then something caught our eyes: immediately across the road from a yellow right turn sign we found something called a ball and pillow structure. It’s a mass of sandstone that had become very dramatically deformed while it was still wet. The wet sand had somehow become disturbed and sunk, or foundered into softer muds below, forming a large round-bottomed mass. Because of its rounded structure it has earned its ball and pillow name. Naming something like this is easy, but how did it get here? We can look at these structures all we want to, but we will never figure out exactly how they formed. Rock is sediment “frozen” solid and we cannot replicate the original dynamics. Some sedimentologists, however, have tried to deal with this problem by experimenting with masses of sediment in laboratory tanks and they have duplicated this structure by passing shock waves through them. In nature the best way to induce shock waves in sediments is to have an earthquake. So, are these “fossil earthquakes?” we don’t think anyone knows. But, that’s the way we are betting.

Ball and pillow structures are quite common throughout the Hamilton sandstones. We have seen many of them in many locations. But most of them are rather small; the diameters of the pillows are only a foot or so across. But some are very large and the one on Rte. 212 is about as big as we have ever seen, being three feet, or so, across.

So, once again, we encounter one of those oddities of the rock record, by itself nothing all that special. Some days a geologist finds wonderful things; other days are far more mundane: This is pretty so-so stuff. But spotting ball and pillow structures is all part of that art we like to call “rockcraft.” Maybe ball and pillow structures aren’t all that important, but it is better to know about them than not to.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

1 28 29 30 31 32 45
Go to Top