"I will never kick a rock"

A Devonian Predator – March 2, 2023

in Uncategorized by

Plants and animals and cobbles in a Bearsville quarry

On the Rocks; The Woodstock Times; Aug. 12, 2017

Robert and Johanna Titus


We often look up into the hills above us and wonder what’s up there. We just can’t go everywhere; we can’t explore all the high slopes and mountaintops in all the Catskills. That’s beyond a lifetime of exploration. But, we can’t help it if we wonder what we are missing. Recently we got a chance to find out just a little about what is up there. We heard from Meryl Hyatt, a summer resident of Bearsville. She and her husband Steve have a home on a hill north of Rte. 212. Their property includes a pair of old bluestone quarries and they had found some fossils in those strata. Could we come and take a look. Well, one of us, Robert, did just that.

Upon arrival, a host of Hyatt family and family friends were waiting in greeting. We are sometimes surprised to find out just how many readers we have. They described a steep hike up the hill, but first they had a pile of fossils that needed to be identified. We always enjoy that; it’s our version of “Antiques Road Show.” The prize specimen was a fine fossil Devonian Catskill plant. It was a form that is well known here in the Catskills; it is called Archeopteris (Not to be confused with the Jurassic bird Archaeopteryx.) It had been collected in one of the quarries we were set to explore.

Soon we were off; our climb took a while and it was steep, but we did get there. Our topographic map told us we had ascended 500 feet. The two quarries were at the same level and located near to each other. It was obvious right from the start, that these had once been two very high quality bluestone quarries. The strata were relatively flat-lying and thin-bedded. These rocks must have been easily split into sidewalk slabs and that is what bluestone quarrying was mostly about.  We were having fun, but we could not help but to think about all the backbreaking hard work that had been done here a century ago.

Strata of this sort were mostly deposited in the middles of large Devonian age rivers, the very rivers that crossed the old Catskill Delta, perhaps 380 million years ago. If you have been a frequent reader then you know that the Catskill Mountains are an enormous petrified delta complex. They comprise a lithified landscape called the Catskill Delta. These two quarries were representative samples of that delta.

Such thinly laminated strata speak of relatively fast flowing river currents. Our group had been transported to the middle of a very large and very wide river and we were all being swept along by its powerful currents. Then, suddenly we found hard evidence for that interpretation. We found a two inch cobble in the midst of the river sandstones. It had been nicely rounded during its journey down the river. This was nature’s lapidary work. Think about how strong the currents must have been to roll along a cobble of this size. It was an unusual find; things like this are rare in the Catskills.

We continued our mind’s eye journey. We “swam to shore” and found the Devonian river banks lined with Devonian trees. Those were all of the genus Archeopteris. The trunks leaned over the waters and the foliage at the top was composed of dense leaves. It did not, in any way, look like anything is the forest of today’s Catskills. These Devonian trees are called progymnosperms; they were early ancestors of today’s conifers and evergreens.

We poked along the quarry walls. Then we looked up and saw what appeared to be evidence of some of the animals who had long ago, lived in our stream. They had left markings on the sands of the river channel (see our first photo). Those had hardened into rock. We had no idea what kinds of animals they might have been but we could see that they had been poking about on the floor of the river channel. We guessed that, all those 380 million years ago, these animals had been searching for something to eat in the river sands. We surmised they had been some sort of carnivores. But we could not be sure. Those poking marks are called trace fossils, they record brief moments of activity in the lives of ancient organisms. We can never be absolutely sure what those creatures had been up to, but they must have been searching for something.

Then we made the prize find of the day. Take a look at our 2nd photo. It is simply an especially good example of what we had been seeing. We are going to give you our interpretation of what we think happened so long ago. It is guesswork, but informed guesswork. It comes with no guarantees. Our animal, it would seem, had been swimming through the water sniffing for food. It was attracted to something in the river sands. It descended and “came to earth.” Then it startled poking. We have numbered the pokes in the order that we think they were made. This was just the sort of things we were hoping for; it was a tantalizing find.

Pokes one through six were searching marks, or so it seemed. Our predator was getting itself closer and closer to what it was searching for. Then poke seven was the final stab. We are betting that this creature made its catch. I had won its meal.

You can never be sure of yourself when you are making speculations of this sort. We will never know what really happened at this location on that day so long ago. But we were privileged to take a glimpse into the past and that was good enough.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.


The Rosendale Trestle – Feb. 23, 2023

in Uncategorized by

The Rosendale Trestle

On the Rocks, The Woodstock Times; May. 16, 2016

Robert and Johanna Titus


Have you been down to the newly restored trestle at Rosendale? It’s just another one of those really good ideas that turns up from time to time. You have, quite possibly, been on the walkway that crosses the river at Poughkeepsie. That’s the old railroad bridge that was refit for foot traffic. Now it is a grand tourist attraction. That walkway takes you on an almost breathtaking crossing of the Hudson. Well they did pretty much the same thing at Rosendale, just on a much smaller scale. You have to go and see it!

This had once been an active railroad trestle that crossed the Rondout Creek at Rosendale. That was in the late nineteenth century. Rosendale had, back then, been one of our region’s real industrial centers. It manufactured very large amounts of natural or “Rosendale” cement. They must have needed a railroad and they did have one. That railroad connected New Paltz with Kingston. We rather suspect that stops were made to pick up cement. Both the natural cement industry and the railroads are now just long-ago memories. The railroad closed in 1977, but the trestle survived. It towers 150 feet above the Rondout Creek and it is more than 900 feet long. For a brief time it served as a professional bungee jumping site, but that did not last. It needed to be restored so it could be opened up for foot traffic, and that did happen. The new foot traffic trestle is the centerpiece of the 22 mile long Wallkill Valley Rail Trail. It opened in 2013.

We kept meaning to visit the trestle and we kept putting it off, but finally we did go. It was well worth the trip. To get there take State Rte. 213 through Rosendale and head west. You will pass beneath the trestle. Watch for Binnewater Road, turn right and then left into the kiln parking lot. From there you have access to the rail trail that will take you for the short walk to the trestle. That parking lot is worth the trip by itself; there are a large number of old industrial lime kilns that date back to the natural cement days.

Well, we worked our way up the trail and soon found ourselves out on the trestle.
Take a look at our photo to see the view; it is a good one. We, of course, enjoyed the scenery but we were soon dreaming geological thoughts about the landscape before us. Right here, the Rondout Creek passes through something that just falls a little bit short of being a genuine, authentic canyon. The slopes on each side of the river rise quickly and steeply. How did this happen?



We had some research to do. But, fortunately, we already knew most of the basics; we had worked this area before. We knew that the Rondout Valley has had a rich ice age history. Back in time, late in the Ice Age, there had been one final advance of the ice. A valley glacier, a single large stream of ice, had advanced up the Rondout Valley. We are not sure how far it got, but it must have actually approached Port Jervis. Then the climate warmed and the ice began to melt away. That caused a retreat, actually a melting back of the glacier. For a substantial period of time the remaining ice dammed the valley and that caused the formation of a glacial lake called Lake Wawarsing.

Someday, perhaps you will find yourself driving southwest on Rte. 209. After passing Ellenville, you will begin to see a broad flat valley floor. That’s the bottom of Glacial Lake Wawarsing. You will see that it was a big lake and it all lay upstream from Rosendale. Well, we knew every bit of this when we were standing on the trestle. That knowledge was our passport into the past.

The two of us walked to the east side of the trestle and looked that way. We saw the ice coming toward us. The glacier passed us and continued on to the west. Next we walked to the western side of the trestle. It was about 1,000 years or so, later. The ice, that had clogged the valley in that direction, was in the process of melting away. It might be better described as disintegrating. Climate change was in full force. Vast, enormous volumes of meltwater had been liberated by the warming. And all that water was headed toward us. We were the mind’s eye, the human imagination, and we were standing upon an imaginary trestle at a very real moment in time, an important one.

Raging, foaming, pounding masses of whitewater cascaded by, just beneath us. What an image we saw; this was the very day when more volumes of water would pass by than ever had before or ever would again. This was the very moment in time when the Rosendale canyon was taking shape. What was going on just beneath us was extremely erosive.

Off to the west, Lake Wawarsing was draining at an almost alarming rate. And all of that water was thundering by beneath us. The power of the moment was unsustainable; all bad things must come to an end. The lake was emptying. We watched as the currents abated. We gazed as the water levels ebbed below the trestle. We saw something of a normal flow being restored.

We were absolutely thunderstruck by what we had witnessed. We had long understood this sort of thing, but to actually see it is something altogether different. What a gift it is to be geologists; we get to travel to beautiful places but we get to see them as others do not.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.” Everybody else has.

The New Kaaterskill Falls Overlook Feb 16, 2023

in Uncategorized by

The New Kaaterskill Falls Overlook

On the Rocks; Th e Woodstock Times

Robert and Johanna Titus


It was nearly 20 years ago that On the Rocks first editorialized for extensive trail renovations at Kaaterskill Falls. Now, at last, something concrete has been done and we are so pleased to see the first results. You absolutely have to go and see the new overlook at Kaaterskill Falls. It’s something we have, indeed, been looking forward to for such a long time, and now it is here–and now it is open to the public.

We have written about Kaaterskill Falls any number of times; it is one of the most picturesque landscape features of our region–and certainly one of the best known as well. People have been visiting the falls for two centuries. We have seen initials carved into the rock there dating back to 1810. It was probably landscape artist Thomas Cole who first made it famous with his paintings, done in the 1820’s. Alexis de Tocqueville wrote about it too.

But there have been problems. First, there has always been too much foot traffic, especially on the slopes leading upwards from the bottom of the falls. People are real erosion hazards on slopes of this sort, and the one at Kaaterskill Falls had, even decades ago, become seriously damaged. But there has always been another problem– it is a dangerous place. People walk out onto the lip of the falls and, if they are not very careful, they slip and fall to their deaths. Over the course of the last few summers, it has only gotten worse. Several people died there during each of the last few summers. That endangered the lives of first responders too. It is perhaps more dangerous to attempt rescues there than to just visit the falls. Something had to be done.

Work began in earnest last summer. The whole canyon, approaching the falls from downstream, is being refitted but that project is not complete yet. Trails leading up from the falls and connecting to other trails are still coming along. But the new trail to the upper falls is, indeed, now complete. You get there by taking Rte. 23A up the clove and into Haines Falls. Then you turn right onto County Route 18 and head east. Turn right again onto Laurel House Road and drive to the end. If you have been there in the past, you will be pleasantly surprised by the new parking lot. You will have no trouble finding the new trail. It’s right there. It is paved by some sort of black stuff that we could not identify. It winds back and forth through the woods in a fashion that allows it to have nothing more than a gentle slope, making it all the more accessible for the elderly and, we are guessing here, probably even for those on modern powered wheelchairs.

When you get to the end of the trail you will find a fine viewing platform with sturdy guard rails. The bars are high enough to provide safety and thin enough so that they do not block the view. And what a view it is. This was all very well planned. They were careful to select just the right spot for this platform.  You look down and see all of the upper falls. Our photo could not do justice to this view; you will just have to go there yourself. When we were there, we saw what was left of the mass of ice that forms every winter. You can scan sideways and see, off in the distance, High Peak and Roundtop Mountains. It is a much better view than could ever have been seen in the past.

And we are sure that it will be a lot safer than the old trail, the one that went to the top of the falls. Nobody is likely to want to climb over the bars here, so it is far less probable that there will be so many accidental deaths. If you insist, you can find the old trail and you can go and visit the top of the falls, as in the past. But they have made that trail unobtrusive and we are guessing that there will be much less traffic in that direction. That will only allow limited numbers of people going where the dangers are greatest.

   There must be some good geology here or we would never have paid much attention to the place. There is. Take a good look at our photo. There are three massive ledges of Catskill sandstone, commonly called bluestone. One is at the top, or the lip of the falls, and the second is halfway down and hard to see. The third makes up the platform at the bottom of this, the upper falls. All this belongs to a unit of rock called the Oneonta Formation, a late Devonian aged rock formation that can be traced all across the upper Catskills. It is part of the fabled Catskill Delta. Those sandstones are ancient river deposits. Those ledges were once sands, and that sand filled the channels of rivers that crossed the Catskill Delta.

In between those sandstones are thicknesses of brick red shales. These comprise more of the Catskill Delta. They formed, originally as overbank deposits. That is, they formed as floodplain deposits in between the old river channels. So, altogether, the strata of Kaaterskill Falls constitute a very representative cross section of the old Catskill Delta. We rather guess that many classes of young geologists will be coming this way.

Make sure you go there soon. After all, it is spring. See the scenery and examine the geology. There is more to come, much more. Old trails will be refitted and new ones will be cut. This site is going to be turned into a much better location, a well-integrated system of trails for hiking and for looking at the geology. We will write about that later, when it is all done. But, for now, we applaud what has been done at Kaaterskill Falls. Two thumbs up!

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

An essay on time Feb. 9, 2023

in Uncategorized by

Where is it all going? An essay on time.

On The Rocks; Th Woodstock Times, March 3, 2016

Updated by Robert and Johanna Titus


When you climb up to the top of Overlook Mountain, pass the hotel ruins and keep on going. Climb the old fire tower. It’s been restored so you can do just that safely. Like most people you are likely to be taken in by the beauty of what you see. You can turn a full 360 degrees and gaze off in every direction. To the north is the wall of Manitou, that straight-as-an-arrow ridge along the eastern flank of the Catskills. To the south you can see all the way to High Point Mountain in New Jersey. To the west, all of the Catskills stretch out before you. And lastly, to the east is the grand expanse of the Hudson Valley. It is such an experience to do all this. Autumn is perhaps the most beautiful time of the year to do so, but all four seasons are rich and generous in their stunning images. Overlook Mountain is one of Woodstock’s emblems. It is truly part of your town’s heritage. But, here’s a question that probably has not crossed your minds. Where is all that stuff going to go?



What? You might think the two of us are mad to ask such a question; after all Overlook mountain is firmly planted exactly where it is. Overlook Mountain is not going to get up and go anywhere. Well, we know it won’t get up . . . but . . . it is going to go away. The question is when and to where. We have some explaining to do.

The two of us live inside a tiny dot within the great expanse of a temporal infinity, but we can focus on the vast amounts of time, stretching out behind us and ahead of us. We look into the far distant future and we know what all that time will witness: the demise of Overlook – and everything else that we can see from that fire tower. And, we can look around and see how. We can actually perceive it happening

We look straight down from that tower and see the ground below. We know that, right in front of us, soil forming processes are turning the bedrock of Overlook into the thin soils of that mountaintop. We can’t see those processes; they are chemistry and biology, and they are far too slow. But we know that they are operating – right in front of us.

And, there is more. Slowly, very slowly, those soils are sliding downhill. The sliding is faster during rainy seasons. The rain soaks into the ground. The water allows grains of sand and silt to float just a little bit; they buoy them up. Then those grains slide past each other, and that is almost always in a downhill direction. The soils almost flow as if they were fluids. But again, it is all so slow. None of it can be seen.

Geologists like to stick stakes into the slopes, and come back year after year to see if they have moved. If they are patient and come back often enough, those stakes are seen to have leaned over, and to also have moved, if ever so short a distance; again it’s always downhill. Sluggish as these processes are, they continue through endless stretches of time. And, this is geology; there is always so very much time.

Just a little faster are the processes of erosion. Down the mountain slope, well below the fire tower, groundwater reaches the surface and so is the genesis of springs at the heads of rivulets. Those flows are hardly much of anything at first, but they coalesce into currents that can be properly called streams. Then they join to become tributaries. All along they are increasingly erosive; they pick up and carry away more sediment. We humans lament the loss of what had once been rich soils. But Nature does not care; Nature just watches.

We climbed back up the fire tower and, once again, gazed in all of the directions those 360 degrees gave to us. Now we were more expectant. We became time travelers, something that geologists are so good at. Around us, the foliage of the forest changed from green to gray and then back again. The transitions continued and sped up. We were watching seasons pass. Soon time raced by so fast that the color stopped cycling and became a continuous grayish green blur.

In this accelerated and accelerating version of reality, we watched and began to see the tops of mountains rounding off and then lowering. Steep slopes became far more gentle. The peaks began to dissolve into an ever more rapidly advancing time.

What was happening right before us? The bedrock had been turning into soil and the soils were sliding downhill. Having gone far enough they were swept up in the flows of streams. Those were small at first but, farther downhill, they became tributaries of larger and more erosive flows. Bedrock had turned into sediment and that sediment was being carried off. Landscape was withering away.

We remained on top of that fire tower and the fire tower remained on top of Overlook. But the elevation of that mountaintop was fast declining and the land, all around us, was disappearing. Much of the newly created sediment was carried directly into the Hudson River. To the north the effort was more circuitous. There sediment entered into the Schoharie Creek, traveled to the Mohawk River, and from there it arrived at the Hudson. To the west sediment traveled into the Susquehanna and the Delaware Rivers. In every direction the sediment was flowing away from Overlook.

We watched as, everywhere, rock was turned into sediment and that sediment was carried down the rivers. And, all around us, the landscape disappeared. Where did it go? Into the coastal waters of the Atlantic Ocean. Down there the sand of broad white beaches had once belonged to our mountains.

Geologists have understood the vastness of time for several centuries now. It makes us feel small, but it gives us a large understanding of the world all around us. And we also understand landscape’s place in that vastness of time. We mortals are, indeed, small and ephemeral, but so too are mountains. Nothing, absolutely nothing, lasts forever.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”


Noah’s flood and the Catskill Delta. Feb. 2, 2023.

in Uncategorized by

Noah’s flood and the Catskill Delta

On the Rocks; 2020

Robert and Johanna Titus


The two of us have been lifelong scientists. For both of us, our interests in science date back to our early childhoods. For both of us the vast antiquity of earth history and the evolution of life have always been givens. Our opinions count: our lifetimes of studies have never uncovered anything even remotely doubtful about the old Earth theories that underpin our sciences. We have never ever been puzzled by finding anything the least bit questionable about this scientific worldview. But we have long known of the opposition to these views generated from within the Christian fundamentalist community. It dates back to 1859 when Charles Darwin published his book about evolution. That opposition has become more institutionalized in recent years with the establishment of the Creation Museum and the Ark Encounter theme park, both in Kentucky. Its views are widely circulated in some Christian home schooling programs. Our recent columns have been outlining our responses to what is called “young earth creationism.” We continue on that theme today. Defending our sciences has always been important to us — and always will be.

Let’s take you to the Mountain House Hotel ledge, high atop the Catskill front. See our first picture. We are guessing that virtually all of you have been there, perhaps many times. What you probably don’t know is just how thick the stratified rocks beneath that ledge are. Take a look at our second illustration. It is a cross sectional view of Catskills stratigraphy. It was done by our friend, the late Dr. Don Fisher of the New York State Museum. It is based on his lifetime study of Catskills stratigraphy. Don didn’t do the work alone; he was joined in this endeavor by scores of other professional geologists. Earlier generations of geologists preceded Don and all this work is being carried on today by a younger generation of researchers. In short, this is well documented science.


There is quite a story here. The thickest strata are on the east (right) and the strata thin to the west (left). You can make out the Hudson Valley on the far right and next to that is the Catskill Front. The thickest stratigraphy lies right at the top of the Catskill Front. Don estimated it at being nearly two miles thick there. If you get a chance to visit the ledge, then look down and imagine all the stratigraphy that lies beneath your feet. It is more than just a little awesome to fully understand this. But it is something that all of us should know about.


There are generations of oceans down below. The black and the gray at the bottom are limestones and shales of the Helderberg and Marcellus seas. Above them (dotted) are the strata of the Hamilton Sea. We have described all of these in recent columns and made the case for how much time each one of them represents. Today’s column is about the reddish-brown unit in the upper right. It makes up almost all of the stratified rock outcrops that we see as we travel about in the Catskills. These are the strata of the famed Devonian aged Catskill Delta.

We know these rocks well. We have been studying them for decades. When we visit their outcroppings, we see petrifactions from within the old delta. We see a lithic mosaic of delta habitats. We gaze at old riverbanks and channels. We recognize floodplain soils and floodplain swamps. We visit the shallow ponds that are so common on all deltas. From time to time we see the fossils of the primitive trees, shrubs and weeds that grew upon this ancient landscape. We have found fossil freshwater fish that lived in delta waters and we have read about the many invertebrates who lived in these lands. We know the climate’s rainfall had been seasonal back then and we have even seen petrified charcoal left behind by dry season forest fires. We appreciate the delta all the more because we understand that it displays some of the oldest forest ecology known on Earth, something called the Gilboa fossil forest. Not surprisingly, these are all primitive land plants. All in all, this may well be the finest view of a Devonian landscape in all the world.

Look again at our second illustration. These are the rocks we have been speaking of in our most recent columns. There are miles of strata here. It is an enormous unit of rock. It is an important unit of rock. It could not have been and was not deposited by the waters of Noah’s flood!

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.” Read their blogs at “thecatskillgeologist.com.”


Noah’s Flood and the Appalachian Basin

in Uncategorized by

Noah’s flood and the Appalachian basin

On the Rocks; The Woodstock Times 2020

Updated by Robert and Johanna Titus


This week, once again, we continue our quarrel with young earth creationists. They comprise, as is commonly known, a sizable branch of fundamentalist protestants who have opposed the basic tenets of geological theory ever since they were first worked out during the early 19th century. Briefly, creationists look into the Old Testament of the Bible for their geological histories; rocks are far less, if at all, important. They argue that the geological bedrock record is largely the product of one event, the deposition of sediments from the waters of Noah’s worldwide flood. That occurred, they claim, in the year 2,348 BC, just a little after the great pyramids are known to have been built. Curiously, the ancient Egyptians seem to have taken little notice.

Geologists, starting in the 1790’s, saw earth history differently; they recognized that many of the world’s sedimentary rocks began as sediments that had been eroded and then washed off of the slopes of rising mountains. As those mountains weathered away, thick sequences of sedimentary rock accumulated within nearby marine basins. They went on, immediately, to realize that these sorts of processes must have required enormous, truly vast lengths of time. It was a great moment in this history of geology and, indeed, of science itself. The great antiquity of the Earth was being recognized for the first time. There was, back then, relatively little religious opposition to any of this. That opposition would not appear until after 1859 when Charles Darwin came along and dressed up these eons of time with a history of evolving, life.

One of these sedimentary basins is called the Appalachian basin. We illustrate it in our map, courtesy of Wikimedia Commons. It originally accumulated sediments that were literally miles thick. These, with time, hardened into sedimentary rocks just as thick. All the rocks you will see throughout Woodstock and all of the Catskills are but a tiny fragment of this unit. Notice that our part of the basin lies immediately west of the Northern Appalachian Mountains. To the south, the basin lies just west of the Southern Appalachians. Yep, there is a relationship. Let’s follow the evidence and see where it leads us.

The basin’s sediments thin westward, away from the Appalachians. The suggestion is that, indeed, as the Northern Appalachians were rising, they were also eroding away. Those sediments weathered off of those mountains and, logically, were thickest where they were closest to their source. They thinned away from that source, all the way to the deep interior of our continent. None of this matches the account of Noah’s flood hypothesis. Flood deposits should not be concentrated adjacent to old mountain ranges; instead, they should be spread out more or less evenly all over the world.

New York State geologists started putting together this history during the 1840’s. By the early 20th century most of the major elements of the story had been outlined. In the 1960’s plate tectonics came along and provided crucial insights into a deeper understanding of these processes. Since then more and more details have been, and are being ironed out.

This view of our region’s geological history requires all of the enormous lengths of time that we spoke of earlier. Geologists know this from the study of modern mountain ranges. How long does it take for a mountain range to rise? We geologists think it takes tens of millions of years. How long does it take weathering and erosion to “melt” those mountains away? Again, tens of millions of years.

There are real patterns in these strata. None of them match the expectations of the flood hypothesis. All of them match the predictions of the scientific theory of mountain building. This is, indeed, proper science.

Contact the authors a randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.” Read their blogs at “thecatskillgeologist.com.”

Noah’s Flood and the Catskill Sea

in Uncategorized by

Noah’s Ark and the fossils of the Catskill Sea

On the Rocks; The Woodstock Times, 2019

Updated by Robert and Johanna Titus


In recent columns we have been defending our science against the views of what are called young earth creationists. These are people who see our planet’s geological history in ways entirely different from the views of conventional geologists, including the two of us. Creationists see the world as being about 6,000 years old. Geologists have determined that it is about four and a half billion. You might think that modern science would easily be able to determine which view is more accurate. We think that it has; creationists disagree. But they do recognize that they have problems. They need to explain thick sequences of sedimentary rocks so they see them as a record of a single catastrophic event, the legendary Noah’s deluge. We geologists look into the past and we see sedimentary rocks deposited, not in a single flood, but in a wide variety of ancient sedimentary environments, each similar to ones seen today. Again, you might think that modern science could deal easily with such discordant views.

We geologists go on to look into the fossil record and see life that was different from what we see in today’s world. We see fossil assemblages that are representative of what lived during specific chapters of the distant past. In truth, we are not sure that we understand what creationists see when they look at the very same fossil records and that is the focus of today’s column.

We always like to say that if any professional geologists found themselves at an unfamiliar but fossiliferous outcrop, it wouldn’t take them long to come up with a fairly accurate determination of when those rocks had been deposited. That’s because trained geologists have had the experience needed to recognize Cambrian fossils, or Jurassic fossils, or Tertiary ones — and so on. All geologists are just plain comfortable with fossils from various chapters of earth history. That, of course, includes the two of us, but what we are especially good at are Devonian fossils; we have seen so many of them, mostly here in the Catskills and, much of the time, while writing for you.


Take a look at our illustration. It’s from a 19th century geology textbook and shows typical marine shellfish fossils of Devonian age. That’s a time period running from 419 to 369 million years ago and that’s the age of all the rocks here in the Catskills. Those fossils speak to geologists of a time when all of our region lay beneath the waves of a shallow sea, sometimes called the Catskill Sea. Strata, often rich in these fossils, can be found in the lower ledges of the Catskill Front. This is nothing less than a petrified ocean with a rich fossil record of its long ago inhabitants.

Our illustration shows Devonian species. Some of them, such as the two clams in the upper right, have a familiar look to them; the rest are truly exotic. The three shellfish in the upper left are called brachiopods. Today, brachiopods are nearly extinct, but they were enormously abundant in all Devonian seas. The shellfish in the lower right is an ancestor of today’s Nautilus. Nautiloids are another nearly extinct group. It’s the trilobite on the lower left which is truly bizarre. These creatures have been gone for a quarter of a billion years. All in all, we are looking at an assemblage of animal species that are all primitive and/or extinct. But, more importantly, they are an assemblage that virtually any knowledgeable geologist would recognize as being Devonian.

Geologists of the 17th and early 18th centuries were puzzled. Back then, most geologists assumed that all fossils were deposited by Noah’s deluge. So why then was a typical fossil assemblage always composed of extinct species and only extinct ones? All species, they reasoned, had been created during creation week. So, while many might have been killed off during the flood, shouldn’t there be a fair sprinkling of modern and, indeed, living forms in all fossil records? Geologists and biologists needed a scientific theory to explain this problem.

The Darwinian theory of evolution solved that problem; almost all fossils are of extinct species because they are from so very long ago. They have simply been passed by in a progressive history of evolving life. They have had the time needed to become extinct and to be replaced by newly evolved forms.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.” Read their blogs at “thecatskillgeologist.com.”

The Black Shales of Noah’s Flood Jan. 11, 2023

in Uncategorized by

The Black Shales of Noah’s Flood

On the Rocks, The Woodstock Times, 2018

Updated by Robert and Johanna Titus


The first stirrings of modern science came in the late 1600’s. At that time the earliest geologists made efforts to classify rocks according to their apparent ages. These pioneering geologists were generally quite religious, and their classifications were aimed at fitting rocks into the Genesis account of Earth history. Accordingly, there were Primary, Secondary and Tertiary rocks. Primary rocks, the oldest, came before Noah’s flood and Tertiary rocks came after it. The great majority of stratified rocks were classified as Secondary, and they were thus thought to have been deposited during the flood. In short, Noah’s flood was seen as accounting for most of the world’s stratified geology. Modern young Earth creationists would return us to something very much akin to this. They struggle to fit most of the world’s stratigraphy’s into some sort of flood chronology.

By the 1790’s geologists began peering back through seemingly endless lengths of time into an increasingly distant past. They developed the concept of uniformitarianism, the guiding philosophy of geology. Briefly, they thought of the present as being a key to understanding the past. The modern world’s sediments came to be seen as analogues to petrified sedimentary rocks. These early geologists began constructing a time scale consisting of discrete chapters in Earth history. That time scale largely replaced the earlier Primary, Secondary and Tertiary classification.

Our Catskills rocks mostly formed during one of those chapters, the Devonian Period, between 419 and 369 million years ago. Most of the earliest Devonian rocks were limestones and we talked of them in our last column. Typically, Catskills limestones are succeeded by black shales, younger and wholly different sorts of rock. See the black horizons on the cross section. Our black shales are thinly laminated and with a shiny black color, much like the black of Darth Vader’s helmet. They formed in an ocean that was much deeper than that of the limestones which preceded them. There are very few fossils in these shales and geologists have long understood that it was the scarcity of oxygen on a still and stagnant deep-sea floor that accounts for that. When we do find fossils, they are usually of very small animals. These had been plankton, animals floating in the oxygen rich surface waters. The notion of strong currents in black shale seas simply does not work. Nor does the concept of rapid deposition.

   1   2

You can see good black shales on the Glasco Turnpike where it crosses Plattekill Creek near Mt. Marion (our 1st photo). Other black shale strata are seen along Rte. 209, north of Kingston (our 2nd photo). Visit either of these locations and see the dark color and view the thin laminations. Uniformitarianist geologists find sediments resembling these at the bottoms of today’s very deep seas.


Collectively, many of our black shales belong to the infamous Marcellus Group. Perhaps you have seen maps of the Marcellus. Then you know that it is spread out across most of eastern North America. See our third illustration. It took a large sea to accumulate all that shale and a deep one too. And that gets us to our main point. Black shales were produced from muds that were deposited slowly at the far offshore bottoms of deep and very still seas. Their muds were made of grains of silt and clay that had drifted there and slowly settled to the bottom, one lamination at a time. It took very long lengths of time to deposit what we see at Mt. Marian or along Rte. 209, far more than fits in with the young Earth timeframe.

Black shales are important; they make up very thick, common and widespread rock units all around the world. None of them fits in, even remotely, with the story of a violent and brief Noah’s deluge.

   Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.” Read their blogs at “thecatskillgeologist.com.”

The old Earth – Part one – The limestones of Noah’s flood – Jan 5, 2023

in Uncategorized by

The limestones of Noah’s flood?

On the Rocks, The Woodstock Times. Feb, 14, 2020

Robert and Johanna Titus


Perhaps you have seen those ads on TV for Ark Encounter. That’s the Noah’s Ark theme park in Kentucky that opened in 2016. The ad features a family of adorable cartoon giraffes visiting the ark and marveling over how very large it is. The park, in general, is centered on promoting the views of young Earth creationists. These are Christian evangelicals who believe that “true science” indicates that the Earth is about 6,000 years old and was supernaturally created by God at that time – along with the rest of the universe! They go on to describe the world’s fossil and stratigraphic record largely in terms of the Biblical account of Noah’s deluge. Such creationists explain that the limestones, shales, sandstones and most other stratified rocks were catastrophically produced during this violent event.

Young Earth creationists base much of their geology from the Genesis chapter in the Old Testament. But beginning in the 1790’s, the then still young science of geology began to recognize a different view. We call this uniformitarianism. Briefly, we geologists look at ancient rocks and then look at the modern world to see how similar earth materials are currently forming. We, for example, visit large swamps and easily imagine how similar vegetations long ago hardened into ancient coals. We can visit the bottoms of modern deep oceans and see dark muds which will someday harden into black shales. We sum up uniformitarianism with the phrase “the present is a key to the past.” Geologists typically learn as much about the modern world’s sediments as they do about the ancient world’s sedimentary rocks. Uniformitarianism is the foundation of geology. And that includes the research we have used for most of the nearly 250 articles we have written about your local geology here in the Woodstock Times.

   So, there is a stark contrast here; young Earth creationists wander the Woodstock region and see stratified rocks that they envision as having formed by and in the waters of Noah’s deluge just thousands of years ago. We geologists see the same strata and are carried into a uniformitarianist past. We see stratified rocks deposited between 369 and 419 million years ago, during a time called the Devonian. Who has it right? That’s an important question.

It’s a topic we will want to deal with in at least several columns. But, today let’s visit some of those rocks that make up the oldest parts of the Devonian stratigraphy here in Ulster County. See blue horizons at bottom of our stratigraphic cross section below. Those are limestones. The best place for you to visit limestones is along Rte. 9W where it passes through the Kingston malls. Almost all the rocks there are limestones. You can see more limestones along Rte. 32, just north of Saugerties. If you want a nice day trip, go farther north and visit the limestone cliff at Thacher Park. At all these places you will see the thick gray strata of frequently fossiliferous limestones.

Illustration by Alan McKnight

Uniformitarianism takes us to modern locations where limestones are forming today. The best and nearest are Florida and the Bahamas. Both are characterized by shallow tropical seas, typical of almost all limestones. Each of these is composed of relatively recently formed limestones and their shallow seas are floored with limey sediments. What, exactly is limestone? One definition focuses on its composition. It is a rock composed of the mineral calcite, calcium carbonate, CaCO3.Take a look at our photo; it shows a view of a microscopically thin sheet of a typical fossiliferous limestone. The dark particles are fossils, fragments of ancient shellfish skeletons. All of these are composed almost entirely of calcite. The clear white material in between those fossils is calcite cement.

Both the fossils and the cement speak to us of vast lengths of time. Countless generations of invertebrate animals produced the shell material. The chemical processes that formed the cement speak to us of equally endless lengths of time. Some estimates are that it takes about a thousand years to produce a foot of limestone. And there are several hundred feet of limestone in our local Devonian. And those strata make up only a small fraction of that Devonian.

And then there is another thought. How could limestone form in a global deluge? There is no imaginable way that flood waters could form limestones. Limestones are strictly chemical and biochemical in origin. Uniformitarianism speaks to us clearly; limestones form in shallow tropical seas, over vast lengths of time. The flood hypothesis does not work.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist. Read their blogs at “thecatskillgeologist.com.”


The Polar Vortex and our Weather – 12-29-22

in Uncategorized by


The Mountain Eagle Nov. 29. 2019



This winter’s weather news from Texas has been horrendous and we are sure you have heard about it. The temperatures went down to as low as 9 degrees overnight in the Houston area. It snowed, pipes burst, and food and water shortages resulted. The cold has been called historic and it was. We have a child and two grandchildren down there, so this was a real concern.

Why? We think there is something going on that you need to understand. What happened in Texas has occurred up here as well; it’s just that we don’t notice it so much. It all began with global warming and its effect on the jet stream. Decades ago, when global warming was still just hypothesis, that hypothesis predicted that polar regions would warm up a lot more than temperate regions. Northern Alaska would warm up a lot more than New York State. It has. The Arctic has become not nearly so much colder than lower latitudes. Importantly, the temperature boundary between Arctic and temperate climes has blurred.

That led to results that had not been anticipated; the jet stream was affected. We hope you know that the jet stream is a flow of air that undulates up and down as it continuously flows from west to east. See our diagram. This brings us a lot of our weather, especially winter storms. Historically, the jet stream has been a relatively gentle up and down undulation. See the dashed wavy line on our diagram. That is best developed when the contrast between cold Arctic and warmer temperate warm is sharpest.

But when the Arctic warms up the jet stream is altered. The up and down undulations become shorter and steeper; they become more pronounced. See the solid wavy line on our diagram. Their west to east motions also slow down considerably. All this can have a dramatic effect on climate and weather. The down undulations contain the coldest air. When those jet stream undulations spread to the far south, they can bring unusual, even historically cold air into a region where that is not typical. Then because of the slow movement, that cold can stay put on a region for a prolonged period of time. That’s what has been happening to Texas this winter.

Well, these undulations pass through the Catskills too. You will hear each one described as an Arctic vortex. But, up here, we just do not see them as historic events. But this was a very serious event in Texas. We think you should be watching the jet stream diagrams on your local TV forecasts. You can also probably find a webpage that will keep you up to date on the jet stream. You may come to better understand what is happening. And that’s, after all, what our column is all about.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.” Read their blogs at”thecatskillgeologist.com.”

1 4 5 6 7 8 40
Go to Top