"I will never kick a rock"


Robert Titus - page 4

Robert Titus has 351 articles published.

When Cow Slip Rock Slipped Aug. 4, 2022

in Uncategorized by


When Cow Slip Rock Slipped.

Most of our field studies consist of pretty serious science, but sometimes we just like to go out and have some fun. We love to chase down geologies that we find on old postcards. Recently we found a good one. Take a look at our first photo; it’s a post card mailed in 1934. It shows something called “Cow Slip Rock” on Basic Creek at the south end of Hempstead Lane in Greene County’s Freehold. On the postcard, Cow Slip Rock was the big, tilted boulder lying upon four slightly smaller ones. We like big rocks so of went to look for it. We thought there might a good story there and we were right.


Take a look at our second photo. There it is, Cow Slip Rock at least 87 years later, and things have changed. It is still in the same location and still tilted as it was long ago. But those other boulders are gone. What happened; where did they go? The answer is fairly obvious; there had to have been a terrible storm in the not too distant past. It generated a streamflow that was powerful enough to sweep away those smaller boulders but not strong enough to move the heavier Cow Slip Rock itself. We stood at this site and let our mind’s eyes take over. We soon were able to experience that flood. There was a very heavy rainfall. We knew that the flow of water had risen considerably. It must have overflowed the stream banks, including where we stood, in a full-fledged flood. The two of us were soon up to our necks in the cold flow. We felt raging, foaming, pounding torrents all around us. White caps speeded by. We heard the loud roaring noise of this flood, and that roar was punctuated by the cracking sounds of fast-moving boulders smacking into each other. We looked across the stream and saw Cow Slip Rock quickly dropping down. All those other boulders were being swept away.

It was an incredible moment; perhaps something that only geologists can hope to experience. We had been privileged to witness an important instant in the history of Basic Creek. should have feared for our lives, but we were the mind’s eyes, and nothing can harm the human imagination.

But when did this actually happen? We don’t know; it’s an event lost to time. But our best guess is that this was hurricane Irene in the August of 2011.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.” Read their blogs at “thecatskillgeologist.com.”

A sinking Coast – July 28, 2022

in Uncategorized by

The Sinking Coast

The Devonian of Greene County Part Ten

Updated by Robert and Johanna Titus


We usually think of environmental disasters as great, awful catastrophic events. What could be worse than a sudden earthquake or volcanic eruption? But sometimes these disasters proceed quietly, even stealthily with almost nobody taking notice until the worst of the damage has been done. People are alarmed about catastrophic events, but it is easy for them to remain blissfully unaware of those more subtle, downright sneaky problems.

One of those today is the sinking coastline of the Mississippi Delta in southern Louisiana. There, the great mass of earth that is the delta has been subsiding, very slowly so that coastal regions have sunk into the Gulf of Mexico. Homes and villages, right on the shore, have had to be abandoned to the advancing waves. Millions of acres of coastal land have thus been lost over the decades and centuries. But have you ever heard about this? Quite possibly not, it is such an inconspicuous process, who notices?

Why is the Louisiana coastline sinking? Many of the reasons are quite natural. Over the millennia, as the Mississippi has carried sediment to this coastal realm it has piled this material up in increasingly thick masses. Just the weight of all this sediment has pressed down on the crust and caused subsidence. Then too, there is the normal process of compaction. The sediment has simply settled and that causes still more sinking.

It probably won’t surprise you to learn that man has interfered with Nature’s balance. Normally the Mississippi replenishes most of the land that has been lost. Floods rise up over the banks of the river and carry new sediment to fill in and replace volumes of sediment that have been lost to subsidence. The land surface is maintained. Sadly, that important process has been halted; over the past three centuries man has built levies along the banks of the Mississippi in a successful effort to thwart flooding. Now there are many fewer threats from flooding, but the benefits have also been lost. It is impossible for floods to carry new sediment onto sinking landscapes. Ironically man’s efforts to control riverbank floods have helped let coastal flooding get out of control. It gets worse; over the past century so many oil wells have been drilled in the region and so much oil has been pumped out of the ground that this has hastened the rate of subsidence. The oil had helped buoy up the ground, and now where it is gone the land is sinking.

Well, for these and other reasons, much of coastal Louisiana has been condemned to sink beneath the waves. It will take decades or even centuries, but a lot of Louisiana is doomed. Some have decried this as one of the greatest looming environmental disasters of our time.

It couldn’t happen in Greene County, could it? Well, no, but it has happened and of course that was back during the Devonian. In the recent installments of this series, we have watched Greene County rise out of the sea as a great expanding delta, the Catskill Delta, advanced westward across much of New York State. For a considerable length of time Greene County lay along the front of that delta and, just like the Mississippi Delta of today, it was subject to the natural effects of subsidence. There were no Devonian age levies or oil wells, but Nature herself caused just the sort of sinking that we see today in Louisiana. And, of course, we have the rocks to prove it.

Take Rt. 32 south from Freehold until you arrive at Rt. 23. Turn left and travel east a quarter mile, or so. There on both sides of the highway are some fine outcroppings of what is mostly Devonian age sandstone. It is the north side of the road where you can see the best exposures so find a good place to turn around and park at the outcrop.

Pause and survey the whole outcrop. You will, we hope, be able to see that it is broken up into three separate layers of stratified rock. In other words, there seem to be three packages of rocks here, laid out, one atop the other, in a vertical sequence. As geologists, we always start at the oldest layers of rock and those are the ones at the bottom of the outcrop at its western end. That first “package” of strata is the least well exposed but let’s start there. You will see a sequence of thickly bedded, light colored sandstones. Above them the stratigraphy grades into finer grained, thinner bedded material. This has a greenish gray to brick red color.


This stratigraphy is repeated in the next package and in the third. In other words, we are looking at cyclical events in a cyclical stratigraphy. In the second cycle you can see that many of the thick sandstones are inclined to the west (left). This is typical of river sediments, and we have found, in recent columns, that such sandstones are, indeed, river channel deposits. That’s the case here; each of the three cycles begins with river channel sandstone. The overlying finer grained material is a petrified soil profile, literally a fossil soil. So, if you follow all this, each cycle represents the presence of a Devonian age Catskill Delta river channel overlain by a floodplain soil.

So, what is going on here and how does it relate to today’s Louisiana? There were two dynamics going on here back in Catskill Delta days. First those ancient rivers were what we call meandering streams. They formed beautiful, sinuous channels that literally snaked back and forth across their delta floodplains. This process, called river meandering, is a very slow one but it is effective over time, and it can still be seen in many modern rivers. But it is slow and that gets us to the second dynamic.

Remember how Louisiana is sinking and that the sinking is slow? Well, our Catskill Delta was sinking slowly also. Slow river meandering was matched with slow crustal subsidence. There was a back and forth motion. First the river would meander one way and then it would return. “Back” was easy, but, by the time a river meandered “forth,” the crust has already sunk quite a distance. A new river channel/ floodplain “forth” deposit would be laid down on top of the old “back” one. If meandering continued, and it would, then given time a third deposit (cycle) would be deposited on the same sinking delta.

That’s what we see on Rt. 23. Did one river deposit all three cycles? We don’t know but it might have been. Was one river or several rivers meandering across this site? We don’t know but it doesn’t much matter. The important thing is that we can look into the stratigraphy here and recognize chapters in the history of the Catskill Delta. It was sinking and its streams were meandering, and it behaved very much like the Mississippi of today. And that is because Greene County, back during the Devonian, was very much like the Louisiana of today. Only time has changed.

Let us add a note about the names of these geological units. This Devonian sequence has been classified and reclassified over the decades. Different names have been applied to the several units of rock described in this series. The rocks described in this installment are probably the upper portion of the Ashokan Formation. Those outcrops probably belong to the lower Ashokan Formation. To the average reader these will not be very important issues but to professional geologists they are the subjects of often heated debate.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

The Mawignack Preserve

in Uncategorized by

The Present is a key to the past

On the Rocks – The Woodstock Times

Robert and Johanna Titus


We are always happy to see the opening of a new land preserve anywhere in the Hudson Valley or the Catskills. We get out to see them as soon as we can, always hoping that there is some good geology. After all, we always need things to write about. You folks have helped quite a bit; the Woodstock Land Conservancy has long kept us busy and we are glad of it. Fortunately, there are also other groups. Recently, Scenic Hudson opened a new preserve near where we live. It is called the Mawignack Preserve and it is off Snake Road in Jefferson Heights, just west of Catskill. Mawignack, we understand, means where two rivers come together. Kaaterskill and Catskill Creek are joined nearby.

We have always enjoyed the many landscapes found along Catskill Creek. Our home lies just (safely) above the Creek. So, we were most eager to see Mawignack. But when we found an aerial photo online, we were a bit disappointed. The preserve seemed to be little more than a very large field with a trail circling it. The trail did pass right along a thousand feet or so of the creek and that boded well, but–it just didn’t seem like all that much; this was not the Grand Canyon. But we went and looked for ourselves. It turned our pessimism was not justified. There as some very interesting geology there.

Google Earth will quickly help you find your way to Snake Road in Jefferson Heights. The Preserve parking lot is near the end of the road. You follow orange trail markers a short distance until there is a split in the trail. Take the right branch. That’s where we found that things got interesting.

We saw something that we imagine few others would notice. Take a look at our first photo, look carefully. Do you see what sort of resembles a stream channel – it trends right to left in the far distance and then left to lower right in the middle of the photo. It looks like something that geologists call a stream meander. It’s dry so it is not an active river, but it was, long ago, late in the Ice Age. How do we know that?

We use something that is fundamental to geology. It’s called uniformitarianism. Briefly that means that when we find a problem in the geological past, something that we can’t figure out right away, then we search the modern world for something similar that we can use to find the solution. We like to say that “the present is a key to the past.” Let’s do that right now. We would like to take you to the “present” at a location you are likely to be familiar with. That’s the Thorn Preserve at its intersection of Zena and John Joy Roads. The southeast corner of the Preserve overlooks a bend in the river, the Saw Kill, exactly the same as we suggest used to be at the Mawignack preserve. See our second photo.

Well what happened at Mawignack? Why is that bend in the river high and dry? We think we know that too. First things first though; the Mawignack Preserve, back then, was indeed a river meander. It lay atop the old floodplain of an ice age version of Catskill Creek. But today’s Catskill Creek flows about ten feet lower that the old floodplain. How could that be? Yep, we think we know that too.

You see, at the end of the Ice Age, when a lot of glacial ice was melting, the ground was rising. As the ice melted away, weight was removed, and the ground simply expanded and rose—about ten feet. Catskill Creek eroded down into those ten feet, to establish its modern channel while abandoning its old floodplain. That floodplain, with its old meander, is still there, perched those ten feet above the river. But the meander can only be seen by the trained eyes of modern geologists.

So, we propose that the two preserves be considered as twins, twin landscapes separated by time. Visit the Thorn Preserve and see a modern floodplain with a modern meandering stream and then go to Mawignack and see an old floodplain with an old meander. Mawignack looked just like Thorn, perhaps 10,000 years ago. Thorn may well look like Mawignack—10.000 years from now.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist. Read their blogs at “thecatskillgeologist.com.”


How far away is the Devonian? July, 14, 2022

in Uncategorized by

How far away is the Devonian?

The Woodstock Times – On the Rocks; Feb. 15, 2018

Robert and Johanna Titus


   If you have been longtime readers of “On the Rocks” then you will know that we almost always write about geology that we have gone out to the field and seen for ourselves. We would like to depart from that in this issue. In fact, we are going to step out of Geology, itself, altogether. It all began when we were pondering the Devonian time period. That’s the geological chapter that extended from 419 to 359 million years ago. It’s an important unit of time here in the Catskills. All of the bedrock you see hereabouts was formed during the Devonian.  But what, we wondered, was going on in the universe that surrounded the Earth during that time? That got us pondering some more. We were being typical scientists and we were doing typical science thinking.

We realized that when you are looking into space, you are always looking into the past. When you are looking at the moon, you are looking at an image of light that departed it a short time ago. We asked our cell phone, and it told us that the image of the moon, that we see, left it 1.3 seconds ago. Our cell phone went on to tell us that light from the Sun is Eight minutes and 20 seconds old. We can’t actually see the Moon or the Sun; we can only see them as they were in the past. Do you think thoughts like this? Then you are a bit of a scientist.

We realized that there must be something out there that emitted light during the Devonian, but our cell phone was of no help. Our “smart” phone might have been stumped, but the Physics department at Hartwick College was not. We posed our question, by email, to the faculty of that department and in just a few minutes we got a very good answer. Living, breathing PhD physicists do these things all the time; they are very bright people. Dr. Kevin Schultz, Associate Professor of Physics, looked into NASA records and found a galaxy, poetically named UGC 12591. It lies just a little less than 400 million light years away from our Earth. That makes its light just a little less than 400 million years old. That light has been traveling toward the Earth all that time. When it reached the halfway point, Dinosaurs were just getting themselves started (that’s more science thinking). In short, that galaxy’s light was shining during the Devonian; it was there during the Devonian.

This NASA/ESA Hubble Space Telescope image showcases the remarkable galaxy UGC 12591. Classified as an S0/Sa galaxy, UGC 12591 sits somewhere between a lenticular and a spiral. It lies just under 400 million light-years away from us in the westernmost region of the Pisces–Perseus Supercluster, a long chain of galaxy clusters that stretches out for hundreds of light-years — one of the largest known structures in the cosmos. The galaxy itself is also extraordinary: it is incredibly massive. The galaxy and its halo together contain several hundred billion times the mass of the Sun; four times the mass of the Milky Way. It also whirls round extremely quickly, rotating at speeds of up to 1.8 million kilometres per hour! Observations with Hubble are helping astronomers to understand the mass of UGC 1259, and to determine whether the galaxy simply formed and grew slowly over time, or whether it might have grown unusually massive by colliding and merging with another large galaxy at some point in its past.

Would you like to see this Galaxy? Well, you need to look into the westernmost region of the Pisces-Perseus Supercluster. That is an enormous chain of galaxy clusters which extends across some 250 million light years of space. It is regarded as one of the largest “things” found in the cosmos. UGC 1259l is big; it is four times the size of our Milky Way Galaxy. That makes it four times bigger than everything you can see in the night sky. Think about that for a moment. The bad news is that you won’t be able to actually look at UGC 12591; it’s too far away. Our photo was taken by the Hubble Space Telescope. If you don’t have access to the Hubble, you won’t be able to see it yourself.

That galaxy is out there; it is that far away. But Hubble is not just looking far into space; it is looking far into the past. This column’s photo is of the galaxy as it was when lower Devonian tropical seas were invading New York State. Our local limestones are as old as the image you see in this column. That light was in transit while the trees of the fossil Gilboa Forest were growing. That light was geologically ancient at the very times when all the rocks you see around here were forming. We scientists ponder such things.

We should specify that we are not that smart; we paraphrased much of this article from a NASA publication. Dr. Schultz helped. We hope that Bob Berman will forgive our trespassing.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.” Read their blogs at “thecatskillgeologist.com.”

What is a Limestone? Pt. two – July 7, 2022

in Uncategorized by

What is in limestone?

Windows Through Time; The Register Star

Robert and Johanna Titus


Last week we introduced you to a special type of rock– the fossiliferous limestone. It is largely composed of fossil shells and fragments of fossil shells. We showed you a very fine example of a shelly limestone, something called the Glenerie Limestone. It is exposed in an outcropping along Rte. 9W, south of the bridge at Glenerie. It is simply an extraordinary rock, absolutely packed with marine shellfish fossils. It is so much fun to explore an outcropping like this.

But how was it, exactly, that a pile of broken shells turned into a rock? That’s an important question. But how can we answer it? After all, nobody was there while it was hardening. Nobody saw it happening. And what can you learn from just looking at such a limestone rock anyway? These might seem like tough questions, but let’s tackle them today.

Turns out that there are different ways of looking at a limestone. One way is to make something called a thin section. That is a slice of rock so thin that you can look right through it. But now, still another question, how do you make such a thing?

You start by cutting your piece of limestone in half. Pretty much every geology lab has a rock saw. It has a turning blade that slices right through rock. You cut your rock into two small pieces and then you pick one and grind it down to a smooth shiny surface. And pretty much any geology lab can do that. We put grits onto a large piece of plate glass and grind the rock. When it is smooth enough, we cement it to a small slide of glass. We cut as much as possible off the limestone so that there is a relatively thin sheet of rock cemented to the glass. If this is done right, and it takes practice, you will already be able to see through the rock. But there is more that needs to be done.

In fact, now comes the hard part. We go back to that plate glass, clean it, and sprinkle it with a very fine grit. Then we grind, and grind, and grind. That bit of limestone keeps getting thinner. And, with practice, geologists can make it very thin. Then a sheet of cover glass is cemented onto it and the result is (drum roll) a thin section! You take it to a good microscope and now you can look right into the rock.

And what you can see is its innards. Take a look at our photo. It shows a thin section view from a piece of Ordovician aged limestone called the Trenton Limestone. One of us (Robert) spent 25 years studying this unit and its fossils. What you see are cross section views of several fossils. On the right center you will see a piece of a creature called a trilobite. We have written about trilobites in Windows Through Time several times. They are marine creatures that might remind you a little of horseshoe crabs. This is a thin section view of one of the creature’s skeletal elements. See the white holes in it? Those housed sensory hairs in life. In the upper left center and lower left there are fragments of crinoid skeletons. Again, we have written about these distant relatives of starfish.

There are several smaller bits of fossil debris in this view. It’s a good image; it shows just how abundant shell fragments are in a limestone. Few of these would be visible to the naked eye so this thin section image is important.

The rest of the view is all white; what is that? It’s cement. It’s a mineral called calcite which is calcium carbonate (CaCO3). That’s the stuff that “glues” all the other grains together to turn the whole thing in a rock.

Calcium carbonate is a very soluble mineral and there is a lot of it in sea water, especially in tropical seas. It readily crystalizes and can quickly, by geological standards, harden a limestone. All those shell fossils are also composed of calcium carbonate and that means that nearly everything you see in this thin section view is CaCO3.  Calcite reacts with hydrochloric acid; it effervesces, sometimes very actively. Many geologists carry an eye dropper, filled with this acid, into the field. If they think they have limestone, but are not sure, they just do the “acid test” and see. This acid is marketed as muriatic acid and you can get some and test rocks yourself.

Thin section analysis is hard work, so we don’t recommend that you learn, but we hope you enjoyed reading about it.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

What is a limestone? Pt. 1 – June 30, 2022

in Uncategorized by

What is a limestone? Pt 1

Windows Through Time; The Register Star

Updated by Robert and Johanna Titus


Like most people, you have very likely heard the word “limestone.” We use the word frequently in our columns. But do you really know what a limestone is? If you saw one, could you identify it? If not, then let’s go to work and fix that. Let’s learn about one type: a “fossiliferous limestone.”

Limestone is one of the most commonly found types of stratified rock. Stratified means that the rock is layered; it is composed of strata. When you look carefully at a limestone, you are likely looking at a slab of the rock. That slab was originally part of a single stratum. The rock broke up along the surfaces of that stratum to become a loose chunk of rock. When you are looking at such a limestone you are likely looking at the surface of that stratum. And, you are, therefore, looking at a small bit of an actual ancient sea floor. This stratum had been deposited as a sheet of shelly sediment on the bottom of that ocean. That sediment was composed of a large number of shells and shell fragments. These, of course, are now fossils. The sediment in between those fossils is likely to be largely composed of smaller shell fragments. Many of those had been ground down into sediment. That sediment can be sand sized stuff, or even finer. Each grain of sand was once part of a shell. You can’t recognize that anymore, but that is still how it got its start.



That stratum was deposited and then, later, it was buried under more and then even more strata. The limestone sediment piled up and the weight of it helped begin the processes that would harden it into rock. So, any slab of fossiliferous limestone has quite a past. It had once been a soft sediment, lying on the floor of an ocean, but all that has passed; now it is a rock.   A very large percent of this rock was once shell material. It could be 100 % but it has to be about 60 to 70% or the rock does not qualify as a limestone.

So, identifying a fossiliferous limestone should be simple. And most of the time it is. Take a look at our photo. It’s a close-up of what is called the Glenerie Limestone. (Yes, it is from the village of Glenerie.) It is a Devonian aged limestone, like so many of them around here. The images that leap out of the photograph are the fossils. The one on the left center is a brachiopod, a bivalved invertebrate animal. It’s called a bivalve because it has two shells. That’s just like a clam, but this is not a clam; it is an entirely different creature.

This brachiopod is a full specimen; all parts of both shells are present. It was never broken up.
This specimen is surrounded by fragments of other shells, most of which had also been brachiopods. This rock is an excellent example because, if you could see the original, you would see progressively smaller and smaller shell fragments. It is easy to guess that every particle in this rock was once part of a shell. And that, in fact, is the case. This is a classic fossiliferous limestone. We look again and we realize that we are looking at a small stretch of a Devonian sea floor.

But, can we say more about that ancient sea floor? We sure can, Geologists like to study the modern world. There is so much out there that can help us understand the past. We like to go out and find locations where such limestones are forming today. We have been doing so for centuries and we always find the same thing. Fossiliferous limestones always form on the bottoms of shallow tropical seas. The Bahamas are a terrific example of such a place.

Our Catskills once, about 400 million years ago, lay about as far south of the equator as today’s Bahamas are north. In short, the Glenerie Limestone formed in a Bahamian seafloor setting. We have both been to the Bahamas and so we know exactly what that setting looked like. When we visit the Glenerie Limestone, along Rte.9W in Glenerie, we envision that Bahamian setting.

We don’t even have to close our eyes. We are standing on the soft pink sands of a tropical sea. All around us is that sea floor. And, all around us, are clear aqua-colored waters. Above us, but only about 20 feet up, we see waves passing by, driven by tropical breezes, we see the sunlight sparkling off the passing wave crests. What do you see along Rte. 9W?

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

The Bend in the Road – June 23, 2022

in Uncategorized by

Bend in the Road

On the Rocks, The Woodstock Times

May 13, 1999

Updated by Robert and Johanna Titus


As geologists there are so many places for us to visit, but we find that there are also some places that we return to over and over again. One of those is the hairpin turn in the road at Plattekill Creek. It’s exactly 1.2 miles above the bottom of the canyon road. When you get there, you will find a very sharp right turn. The road then goes around another broader left bend and continues up the canyon for another mile until reaching the top.

The bend in the road is just one of those places where we see all sorts of things. First there is an especially fine view. Look west and you see the whole canyon before you. Look back to the southeast and you get a nice peak at the Hudson Valley. At night you can see the Rhinebeck Bridge and part of Kingston. Look west at night and, depending on the moon and the weather, you get all sorts of silhouette effects on the horizon.

But it is the bedrock geology that we would like to talk about today. A lot of rock had to be cut through and carted off to make way for the road and that has provided us with a fine outcrop. Just before the bend you will see about 40 feet or so of massive sandstone. That is the cross section of an ancient river. we, of course, really mean it when we say ancient. We are talking about the Devonian time period, about 385 million years ago. There was a river here then and it flowed across a vast floodplain. This ancient stream had nothing to do with today’s Plattekill Creek; it is just a nameless river, lost in the annals of Earth history. The river itself was prone to times of high and active flow. If you look at the strata here, you will see the evidence: Steeply inclined strata called cross beds. In our mind’s eye, we envisioned days when very powerful flows of water had passed by here.

Above the river deposit there are five feet or so of red shales. These are old floodplain sediments; they were deposited during the floods that occasionally swept through here. The red color fades at the top in what is an old soil profile. It’s only five feet of red strata, but what a record of time! These sediments record untold numbers of floods and the long slow process of soil formation.

As you round the bend in the road you find another ten feet or so of river sandstones. We look at rivers today and think of them as permanent landscape features, but they are not. Floodplain rivers come and go; they slowly meander back and forth, snake-like, across the flat lands. A river will occupy a site for a long time, then meander off, and much later, it may meander back. Or maybe some other river will meander into the same site. That’s what you see at the bend in the road. First there was one river, then a red floodplain, and then the same or another river returned to this site.

Continue up the road and then you will see that there is still another five feet or so of red floodplain with the paleness of another fossil soil. Above that is the single best geological feature of the site. That second red floodplain is followed by a truly massive river sandstone. There must have been a very large river here, one that deposited a lot of sand, about 50 feet or more. But it is right at its base that we found the best feature. The sandstone has eroded an overhang above the softer red shales. Look under and up at the sandstone and you will find what we call “drag marks.” Drag marks are just that. Something, probably a waterlogged tree trunk, was dragged down the stream by the river currents. It dragged into the muds and left the mark. Actually, there are two of them. They represent just the few seconds it took for a log to move along and leave the drag mark. But those few seconds have been recorded there in the rock, for nearly 400 million years.

The bend in the road is an especially nice exposure of some very typical Catskill stratigraphy. If you spend a little time here and work your way through the site’s stratigraphy you will learn a lot about our area rocks, and it’s not very complex. Basically, the light sandstones are river channel deposits, and the red shales are old floodplain sediments. You can apply what you have learned here, throughout most of the Catskills. That’s a lot of knowledge.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

A new book about an old forest – June 16, 2022

in Uncategorized by


A Book about the fossil Gilboa Forest

Our Catskills can hardly be portrayed as being a great center for scientific studies; there are no great research universities here, nor any high-powered labs. But these mountains are known all around-the world for one enormously important scientific fact. The Catskills are home to some of the oldest known examples of forest ecologies. We mean not just fossil trees but actual fossilized forest ecologies. Our Catskill Mountains are essentially a petrified delta. It’s called the Catskill Delta from the Devonian time period of about 420 to 360 million years ago. The strata of our mountains, here and there, display patches of what can be called the Gilboa Forest, an assemblage of very early and very primitive trees. With them are the weeds, bugs and fish that lived on the soils and in the rivers of that delta. It is an enormously important record of a critical chapter of evolution, when life was moving out of the oceans and onto the land

Sadly, the scientific literature about the Gilboa Forest has almost always been written in a nearly impenetrable technical prose. Now, at last., three of the today’s principal researchers have put together a book aimed at introducing the Gilboa Forest to the people of the Catskills: “The Catskill Fossil Forest.” These authors, Binghamton University professor William Stein and State Museum geologists Helen Van Aller Hernick and Frank Mannolini, feel an obligation to the people of the Catskills to explain their science. The book, published by the Gilboa Historical Society Press, is an account of recent studies of fossil forest in Gilboa, Cairo and South Mountain in the eastern Catskills. We learn of the step-by-step uncovering of these three important fossil sites and are introduced to the major categories of fossil trees that were brought to light. The book is brief and extremely well illustrated. It is a most unusual and remarkable effort by professional scientists to explain their work to the local community. It is expected to be introduced at a book signing between 11:00 and 4:00 at the Juried Museum in Gilboa on Sunday. June 12th.

But, while aimed at the general public, this is indeed a book of science. You need to know how to read it. First, this is not a novel; you just don’t start at the front and read through it, cover to cover. In fact, you might begin by spending a fair amount of time looking at the illustrations, especially those of the different fossil trees. Look them over and read the legends. Much of science is communicated through illustrations so you can learn a lot from this. You can also start picking up the Latin terminology and that will prepare you better to read the main text. After all, if you are going to be reading about Pseudosporochnalean and Eospermatopteris trees, then it really helps to have the right images in your mind. And there’s another big plus, you’re going to feel so incredibly smart knowing these words and so many others. All this may be tough at first, but you can do it.

And then there are the insets. The authors have picked out a large number of special subtopics for special readings, separate from the main text. They are important and often quite interesting. Each is a separate bit of education. You should spend time just browsing these.

We strongly recommend this book. If you enjoy our columns, then you will certainly want to learn what is presented in this account. It’s important science. Local science.

It is available at the Gilboa Museum gift shop and at local bookstores. Online at gilboafossils.org/store-home/


Contact the authors at randjtitus@prodigy.net. Join their facebook page The Catskill Geologist. Read their blogs at “thecatskillgeologist.com.”

Why winter happens 6-9-22

in Uncategorized by

The Reasons for Seasons

Stories in Stone; The Columbia County Independent

Updated by Robert and Johanna Titus


Our Hudson Valley region summers generally bring wonderful weather with dry air and cool nights. Our autumns are spectacular with their foliage. Our winters are dreadful, and once again it is that time of the year. We stoically accept the onset of another cold season and make do with the holidays as some sort of compensation. Few of us, however, know or even wonder why we must endure this annual season. Do you? Some of you might be able to give a reasonably good explanation for our winter season in terms of the Earth’s orbit about the Sun. Many of you, however, might flub the story; it is just a bit complex.

But it really doesn’t matter; We are not interested in the standard astronomical explanation of winter. We would like to consider a deeper reason, in fact, the real reason it is cold out there right now, and that has less to do with the Earth’s orbit than it does with the what’s right above you, or rather, what is not right above you. Read on:

Even if your astronomy is not very good, most of you can probably run through a quick description of the greenhouse effect, it’s one of the leading environmental fears we face today. Briefly, our world’s industries are burning fossil fuels and pumping out large volumes of carbon dioxide into the atmosphere. Carbon dioxide traps solar energy in our atmosphere much the way the glass traps solar energy in a greenhouse. As industrial production of carbon dioxide continues, it may be that the Earth’s climate will warm up with all sorts of unfortunate side effects. Such a fate is sometimes referred to as the “Greenhouse Earth.”

But what if it were the other way around? What if the quantities of carbon dioxide were declining instead of increasing? That gets us to a term which is rarely used – the “Icehouse Earth.” That’s a notion few have been much worried about nowadays, but it actually has happened, and that gets us back to what isn’t above you. In earlier columns we wrote that there were, in the distant past, great mountains towering above our Columbia County region along with most of western New England. These mountains are called, by geologists, the Acadians. They should not be confused with today’s small Taconics and Berkshires; these mountains rose to elevations of tens of thousands of feet and that was right here. That was during the late Devonian time period or about 375 million years ago.

This had been a time when the world was truly a Greenhouse Earth. There was actually 16 times as much carbon dioxide in the Devonian atmosphere as is today. That greenhouse effect must have been enormous; tropical climates prevailed across the planet. But it was not to last. Here in today’s New England, our rising Acadian Mountains were subject to chemical weathering and erosion. Those processes converted the Acadians into sediment which, eventually, hardened into rocks deposited across the rest of New York State. What is critical here is that the processes of chemical weathering consume carbon dioxide; they take it right out of the atmosphere. As the Acadians weathered away, the amounts of carbon dioxide in the atmosphere dropped dramatically, from 16 times as much as today down to merely today’s levels by the end of the Devonian Period, about 350 million years ago. This, as you might guess, resulted in a reversal of the greenhouse effect and quite a cooling of the climate. In fact, there was an early ice age at the end of the Devonian.

There is plenty we don’t understand about this story, but this was a turning point in Earth history. Carbon dioxide would never again be as abundant as it was during the early Devonian. Its levels would rebound again during the age of the dinosaurs and those great hairless monsters certainly must have enjoyed the temporary restoration of the greenhouse warmth. But there simply would never again be so much carbon dioxide, and the climate would slowly deteriorate, with cooling temperatures, especially during the last 60 million years. Some argue that this cold is what caused the extinction of the dinosaurs. There is a good case that can be made for this argument too. Winters, which probably had not been much of a problem during the early Devonian, slowly became longer, colder and more distinct from the rest of the year. Thus, what we know as seasons made their appearance. The process has continued right into our time. In reality, even if industrial pollution continues unabated, ours is a time of an Icehouse Earth. Glaciers in Antarctica and Greenland attest to that.

So, were our old Acadian Mountains responsible for winter? Well, that’s a bit of a stretch, but it is fair to say that the many processes that came to produce and then destroy the Acadians were all part of a climate machine that eventually created the Icehouse Earth climate that we can look forward to for the next three or four months.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “Tye Catskill Geologist.”

Roeliff Jansen Kill, Pt. 6, the floor of a lake.

in Uncategorized by

Roeliff Jansen Kill, Part 6 –Bottom of a lake

Stories in Stone

Updated by Robert and Johanna Titus


We continue our journey down the Roeliff Jansen Kill. Last time we had reached the village of Elizaville and there we found an ice age delta. Back, about 14,000 years ago, the Roeliff Jansen Kill had reached the shores of an ice age lake. It’s known to geologists as Glacial Lake Albany. For quite some time that lake represented the downstream end of the Roe-Jan and, as the river flowed into the lake, it deposited the sediments of the Elizaville Delta.

But the lake was doomed; all lakes are. Lakes are ephemeral features; time will always bring their destruction. The waters of Glacial Lake Albany eventually drained down the Hudson and into the Atlantic Ocean. That left behind a big empty basin with the Roe-Jan flowing into it.

Now the Roe-Jan tumbled over the edge of its old delta and reached the flats of the old lake bottom. This constitutes a whole new stretch of the river, and we can, of course, explore that stretch. We can see it with or without the lake waters.

From Elizaville, take County Rte. 19 north. You will soon cross a small creek and then see a large apple orchard. Just beyond the orchard, the road will cross another small creek and then start to climb uphill a bit. You have just crossed Doove Kill and are now rising up onto the Manorton Delta. Doove Kill, just like the Roe-Jan, flowed into Lake Albany and created its own delta. On the left (west) side of the road you will see a small pond. That is an old ice age pond. It formed just like Twin Ponds at Elizaville. A large block of ice was buried in the delta and, when it melted, it left behind the hole in the ground that became a pond.

What we are doing now is driving north, parallel to the shores of what had been the old lake. Look to your left and imagine the waters of Lake Albany stretching out before you. The first 50 or 100 feet of lake are covered with a thin sheet of ice. Beyond that are the open waters of the lake. There are a number of small islands out there, but it is, otherwise, a very big lake. The other side of Lake Albany is nine miles away. You can see Mount Marion rising above the western shoreline. When we look north and then south, we see the lake disappearing into the horizon; it is, indeed, a very large lake!

But we have exploring to do. We continue driving north on Rte. 19 until we reach the village of Manorton. There we take a left fork and follow County Rte. 8 off to the northwest. We begin a long steady descent and drop down from and elevation of 260 feet to one of 190 feet. We are dropping off of the Manorton Delta and our descent is a journey into the depths of Lake Albany.

Imagine the waters deepening around you as you drive down the road and imagine it growing darker as well. Our journey takes us about a mile and a half until we get to the village of Blue Store. That’s a historic old town, but out trip is taking us well beyond what most people reckon as history. We arrive at the old hotel and restaurant and look around. The countryside here is flat and expansive; it is the floor of the lake.

It is always somewhat startling to see a flat landscape and recognize it as an old lake bottom. We are now 70 feet beneath the waves of Lake Albany. This is not a nice place to be; the water is murky and it is dark and very cold here. But, like or not, this is Blue Store as it was, about 14,000 years ago. Once again, the Roe-Jan has made us time travelers.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

1 2 3 4 5 6 36
Go to Top