"I will never kick a rock"

Monthly archive

March 2020

Footprint of a Mountain Range 3-26-20

in Uncategorized by

Footprints of a Mountain Range
Stories in Stone  – The Columbia County Independent
Oct. 3, 2003
Updated by Robert and Johanna Titus

We normally pay so little notice of the many rock outcroppings that we pass by in our daily lives. Why should we; they are just rocks? But there is so much to see if you know what to look for. Today we would like to give you a reason to look at rocks and a good one. Columbia County is a landscape that has many geological pasts. One of them shows a history of intense mountain building. That’s curious as there are no real mountains in our area. There are the Berkshires and the Taconics, but they are mostly pretty little hills. How could there ever have been real mountains here?
But there were, and in fact Columbia County was once part of one of the world’s great mountain ranges. Let’s learn how to read the evidence. We will describe what you can see at one good location and then you can look for the same thing in the rocks where you live. Travel to the intersection of Rts. 23 and 9G. Across from the Stuart’s is a fine exposure of rock. Look for horizons of thinly laminated black shale, and thicker bedded black sandstone. All this is a unit of rock called the Normanskill Formation and it dates back about 450 million years to a time called the Ordovician time period. At first these look like nondescript rocks but there is so much more.
Let’s do the fundamentals. These rocks are stratified, and each layer is a moment in time. Back in the Ordovician this location was at was the bottom of the sea and each horizon of rock was, briefly, the sea floor. Sometimes that sea floor was mud and that accounts for the shale. Sometimes it was a sandy bottom and that now makes the sandstone. Touch any layer of rock and you are touching an ancient ocean bottom, literally. We never tire of that notion. Each stratum had its turn and then a depositional event brought a new layer of sediment and created a new sea floor. If you get a chance to scuba dive across the bottom of a sea you will see its floor and you will have the impression that this is something that is, forever and forever, permanent. But our rocks tell a different story; sea floors are ephemeral.
And sea floors are supposed to be under a lot of ocean; what is this one doing on dry land? The question gets worse when you realize that this sea floor was once at the bottom of a very deep submarine trench, perhaps 20,000 feet deep. Clearly there has, since the Ordovician, been a lot of uplift. It gets curiouser and curiouser!
Sea floors, today, are almost always flat. Look over this outcrop and you will find that none of these layers are horizontal. There is more to this story; let’s keep looking. There are four road signs here. The first is a black and white Rte. 23 sign. Just to the east are three yellow road signs; the middle one speaks of a left turn. Take a good look at the strata between the first two signs. Most of the bedding here dips steeply to the east. Clearly something has happened to these once flat-lying strata. They have been tilted. Imagine, for a moment, how much it takes to move, let alone tilt, a great mass of rock. Something very serious happened here and that something was mountain building.
And, there is still more. Halfway between the first two yellow sign look for a sequence of strata that have been sharply folded into a smiley face U. Once again, imagine the energy needed to fold rocks. Keep on walking east and notice that, between the second and third yellow signs that some of the strata have lost their eastward dip and they are nearly vertical. All in all, the rocks don’t just speak to us of folding; they speak of intense deformation.
Uplift, tilting and folding are the hallmarks of mountain building and that’s what happened here, but when? Drive down the road 2.3 miles and you will reach the intersection of Routes 23 and 9. There, on the left, is a fine exposure of gray limestone called the Manlius Limestone. These rocks are younger, about 50 million years younger. They belong to a time called the early Devonian, and that makes them a mere 400 million years old. Take a good look at the lower 20 feet of strata here. These beds are gently dipping to the east, but this deformation is very mild compared to what we saw back down the road. Here there is no folding and no extreme tilting of the rocks; they lie essentially as they were deposited in the Devonian. There has never been a time when these beds were deformed. That tells us a lot.
Obviously, mountain building deformation came after the Ordovician, because those rocks are deformed. But, also, deformation must have been before the Devonian, as those rocks are not deformed. There must have been a great mountain building event between the Ordovician and Devonian and there was. Our mountain building event is called, by geologists, the Taconic Orogeny. This event reached its peak during a time called the Silurian Period and that, of course, is the time between the Ordovician and Devonian. From this location on Rte. 23 look east and, in your mind’s eye, see the profile of the Taconic Mountains that once towered on this horizon. They probably rose 15 or 20 thousand feet into the sky and so they rivaled the Rockys and Andes of today’s world.
But they are all gone, or at least, they are nearly all gone. Only the Berkshires and the Taconics remain. The rest has slowly, and we mean very slowly, eroded away. Look around you, do you see much erosion going on? This is geology and it takes a very long time.
Our story has been about these Rte. 23 outcroppings but remember that we would like you to take what you have learned here and look at the rocks near you. Can you see folding or tilting in the rocks? If so, then you are looking at the same mountain building events. Wherever you are, look up. Above you there once were tens of thousands, of feet of mountain. Now, look at the rocks in your area again. You are looking into the very core of a great mountain range. What we call Columbia County is something that you might find 20,000 feet below the top of Mount Everest. Changes your point of view, doesn’t it?

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

A very old Earth – 3-19-20

in Uncategorized by

A very old story
Stories in Stone
Feb. 29, 2008
Updated by Robert and Johanna Titus

Before I (Robert) was lured away by the fame and fortune of writing geology columns I was a professional paleontologist. I published many an article on the ancient life of New York State in professional journals. I speak of this because my science is and has been under assault. The centerpiece of paleontology, like all biology itself, is the great theory of evolution. All of my professional research was founded upon evolutionary theory and the best studies that I ever did were documentations of evolutionary events.
I have, three times, followed a fossil species through sequences of stratified rock and watched as it evolved into a second species. I have not only seen species evolve but I have followed them as they evolved into new ecologies. These studies were the greatest privileges that ever came with my being a scientist. I have seen evolution about as well as anyone, anywhere. That’s not bragging; it’s just the record.
Paleontology is the exploration of life’s distant past. It is nearly heartbreaking that some religious groups oppose my science’s very foundation. Science is not about religion; we steer well clear of the supernatural; ours is the study of the natural world only. We neither oppose, nor support any religion. Some of us practice religions; others, like me, do not.
But we do teach our sciences. Ours is a scientific and technologically advanced society in a competitive world, and it must maintain the highest standards in the teaching of science. There is no place for, say, economics or politics to play a role in classroom science. Likewise, this is no place for any religion to intrude its views. Such notions should be dismissed immediately. Economists and political scientists generally don’t interfere with the teaching of science, but many members of the religious community would if they could.
Young Earth “Creation Science” and its fraternal twin “Intelligent Design” profess that a great supernatural entity (God) created the world and all life on it. Well, fine, many scientists are religious and believe the very same thing. Where science and these particular religious views part company is over the issue of evolution. Was the Earth and life on it created as we see them today, or did they form and then change naturally? Did life change slowly through time, evolving from simple ancestral forms into what we see today?
In recent years serious efforts have been made in Pennsylvania and Kansas to inject Intelligent Design into high school biology programs. I hate to think of the position that many dedicated biology teachers might find themselves in. Should they risk their careers in defiance of religion? Or should they knuckle under? It is a dreadful dilemma.
All this has been portrayed as part of the ongoing “culture wars” but I disagree. Issues like abortion, school prayer and displays of the Ten Commandments and manger scenes are value issues. People of good conscience can come to different views. But science has, I think, always fallen beyond that. We study the natural world as it is, not as we want it to be. We scientists have always determined to steer clear of values as much as possible
This column has found a very considerable body of evidence that, like the rest of the planet Earth, our Hudson Valley has a very venerable geological history. We have, over the last few years, taken many trips into our region’s distant past. We have visited the great deep oceanic abyss that once covered all of Columbia County. Its dark oozy mud is now hardened into the black Normanskill Shale which makes up much of the land along the Hudson. We have also visited the shallow tropical sea that once existed here. Its Helderberg limestones make up all of Becraft Mountain and they are rich in an exotic array of fossils. All those fossil species are now extinct; they were denizens of distant past. At Bash Bish Falls we have watched as great mountains rose to enormous altitudes in what would eventually be the Appalachian realm. Then we saw those mountains slowly weather away. We’ve seen glaciers advance down the Hudson Valley and, after they melted away, we saw Glacial Lake Albany fill most of our valley with icy meltwater. Altogether these historic events took enormous lengths of time: hundreds of millions of years.
If Creationism or Intelligent Design is true, then all of this geological history is horribly misconstrued at best, fraudulent at worst. I and all of my colleagues are seriously deluded people. But I have always tried to tell where you can go and see the evidence for yourself. I hope that many of you have done some of the many field trips that I have described. If so, you can judge for yourself. Our valley and our Earth are very old.
If Creationism or Intelligent Design is true, then science itself is a hoax. Well, keep reading these columns and judge for yourself.
Reach the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.”

Name your poison Mar. 12, 2020

in Uncategorized by

Name your poison
On the Rocks
Oct. 24, 1996
Updated by Robert and Johanna Titus

Black sedimentary rocks are occasionally seen in the Hudson Valley. Recently, we described some along Rte. 209, south of Saw Kill. The dark appearance of these strata makes them remarkably eye-catching and, when they make up tall cliffs, they loom, dark and menacing, over the landscapes.
It’s the shiny, jet-black shales that we are talking about. They are often rich in undecayed organic matter; it’s the carbon that makes these rocks black. This generally suggests to the geologist that there were low-oxygen conditions in the sea waters at the time of deposition. Without oxygen, most decay bacteria cannot function; they die before they can completely destroy the organic matter. But why low oxygen? That takes us back in time.
Back in the early Devonian Period, these shales were accumulating in a deep sea, immediately adjacent to the rising Acadian Mountains of western New England. Thick soils formed on the rapidly weathering mountainsides. The soils were easily and rapidly eroded and provided sediments that were eventually transported into the nearby Catskill Sea. This material was rich in dissolved nutrients, such as nitrates and phosphates. They fertilized the water and that led to the next step in what was to be a complex chain of events.

The fertilized waters were ideal for algae; they experienced algal blooms, great population explosions in the surface waters of the Catskill Sea. A whole ecology became established as dense mats of floating, or planktonic plants and animals grew, somewhat similar to that of today’s Sargasso Sea. While all this was great for the plankton it was deadly for just about every other category of marine organisms. As the plankton died, they were attacked by decay bacteria; the algae bloom led to a bacteria bloom. But the decay process consumed so much oxygen that the seas soon became oxygen depleted. The hapless bacteria had, in effect, poisoned their own habitat, because they needed oxygen too. Their numbers quickly plummeted and very soon, all types of animals, as well, suffocated in the oxygen depleted sea. But the algae just kept on proliferating in the surface waters where there was plenty of oxygen, diffusing in from the air above. Soon, large masses of undecayed biological material were sinking to the floor of the ocean. The climate was tropical, and the nearby coastal lowlands provided lots of vegetation, much of which drifted into the basin, adding more organic matter to the black shales. Almost all of these organics accumulated as thinly laminated, shiny black shales.
Back then, the Catskill Sea was largely isolated from other deep bodies of water; it was nearly surrounded by land or very shallow water. To its east, mountains blocked weather patterns and shielded the basin from most storm activity. All of these conditions promoted what are called stagnant, thermally stratified waters. The sunbaked surface layer was hot, while deeper water remained cool. Depth stratification and a dense planktonic mats combined to prevent agitation and mixing of the waters, causing stagnant seafloor conditions to develop. Virtually nothing could live in this sea, except at the surface where there was always plenty of oxygen. This was truly the poison sea.
Many of the earliest Catskill shales are jet black, and they form the Bakoven Shale at the base of what is called the lower Marcellus Group. As we have seen, they are the record of the Catskill poison seas. The upper beds of the Marcellus Group are similar looking but very different deposits. These are fossiliferous black shales and dark gray sandstones. They sometimes have rich assemblages of brachiopods, clams and even corals. These were still mud-bottomed seas, but they were deposited at times when there was a fairly large amount of oxygen in the water, at least enough to allow marine shellfish to survive and even flourish. These can be fun rocks to poke through as they are occasionally richly fossiliferous, and the preservation of those fossils can be very good.
See the Bakoven Shale on Rte. 23A where it crosses Kaaterskill Creek east of Kiskatom. Go visit that large outcrop along Rte. 209, between Kingston and Saw kill. The far south end is the real poison sea. As you travel upwards and north from those bed you are looking at shallower waters which had more oxygen.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.

Your Godawful geology. Mar. 6, 2020

in Uncategorized by

Your most Godawful geology
The Catskill Geologists
Robert and Johanna Titus
The Columbia Paper, January 2020

We haven’t properly introduced ourselves, have we? We are Robert and Johanna Titus. We will, from time to time, be writing for The Columbia Paper. One of us, Robert, has worked with editor Parry Teasdale off and on since 1996 and now we are going to resume. We call ourselves “The Catskill Geologists” and that is because we work for a number of newspapers and magazines across the river from you
So, if we are the “Catskill Geologists,” then why are we writing in Columbia County? Good question, and we have been wondering about that ourselves. You see, you folks have some of the most Godawfully difficult geology anywhere that we know of – perhaps just anywhere at all. Take a look at the map we include here. It is the Columbia County part of the New York State Museum’s geological map. Its production was a big event back in the 70’s. That was supervised by then State Museum geologist and our friend, the late Dr. Don Fisher. Maybe you knew Don; after retiring from the museum he opened up a rock and mineral shop in Kinderhook.
Don’s map shows the distribution of the major rock units that make up the bedrock here in Columbia County. If you can’t make sense of the map, don’t worry about it; we just want you to see how difficult it is. One unit, in gray, stretches through the middle of the map from the south center of the county and then on toward the northeast. That’s the Elisaville Formation which is mostly a black shale. You can see outcroppings of it exposed along the Taconic Parkway in the southern part of the county. Look around the map; there are a lot of other rock formations, aren’t there? Each records a moment in geological time. And they all seem to make up a very complex jumble. That’s the Godawful part of all this.


How on Earth did all this come about? Well, we think we know – sort of. We read about this in Don Fisher’s book “The Rise and Fall of the Taconic Mountains,” which was published in 2006 by Black Dome Press. Don’s book recounts the geological history of the county and it is broken up into a number of chapters defined by their plate tectonics. Each tectonic event witnessed North America colliding with another tectonic plate, one was a collision with Africa, two others involved Europe. Columbia County was in the heart of all this. Each collision saw the rise of mountain ranges, here and in western New England. Sediments, eroding off of those new mountains, would be the makings of each new rock unit. All of the county’s rocks, both new and old, were compressed, folded, fractured and metamorphosed in the heat of the collisions. Does this sound Godawful? It is, and that’s what you see on the map, perhaps all you can see!
It only gets worse; hundreds of millions of years later came the Ice Age. Glaciers, thousands of feet thick, flowed down the Hudson Valley and swept across the rest of the continent. You can imagine the complexity of the geology left behind by that event? The two of us don’t have to imagine it; we have seen it and worked with its geology.
Our job at the Columbia Paper will be to explain all his in a fashion that can be understood by you, the average general reader. We think we can do that; we look forward to it.

Contact the authors at randjtitus@prodigy.net. Join their facebook page “The Catskill Geologist.” Read their blogs at “thecatskillgeologist.com.”

Go to Top